| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 | /*							ellik.c * *	Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * double phi, m, y, ellik(); * * y = ellik( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * *                phi *                 - *                | | *                |           dt * F(phi_\m)  =    |    ------------------ *                |                   2 *              | |    sqrt( 1 - m sin t ) *               - *                0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -10,10       200000      7.4e-16     1.0e-16 * * *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*//*	Incomplete elliptic integral of first kind	*/#include <math.h>#ifdef ANSIPROTextern double sqrt ( double );extern double fabs ( double );extern double log ( double );extern double tan ( double );extern double atan ( double );extern double floor ( double );extern double ellpk ( double );double ellik ( double, double );#elsedouble sqrt(), fabs(), log(), tan(), atan(), floor(), ellpk();double ellik();#endifextern double PI, PIO2, MACHEP, MAXNUM;double ellik( phi, m )double phi, m;{double a, b, c, e, temp, t, K;int d, mod, sign, npio2;if( m == 0.0 )	return( phi );a = 1.0 - m;if( a == 0.0 )	{	if( fabs(phi) >= PIO2 )		{		mtherr( "ellik", SING );		return( MAXNUM );		}	return(  log(  tan( (PIO2 + phi)/2.0 )  )   );	}npio2 = floor( phi/PIO2 );if( npio2 & 1 )	npio2 += 1;if( npio2 )	{	K = ellpk( a );	phi = phi - npio2 * PIO2;	}else	K = 0.0;if( phi < 0.0 )	{	phi = -phi;	sign = -1;	}else	sign = 0;b = sqrt(a);t = tan( phi );if( fabs(t) > 10.0 )	{	/* Transform the amplitude */	e = 1.0/(b*t);	/* ... but avoid multiple recursions.  */	if( fabs(e) < 10.0 )		{		e = atan(e);		if( npio2 == 0 )			K = ellpk( a );		temp = K - ellik( e, m );		goto done;		}	}a = 1.0;c = sqrt(m);d = 1;mod = 0;while( fabs(c/a) > MACHEP )	{	temp = b/a;	phi = phi + atan(t*temp) + mod * PI;	mod = (phi + PIO2)/PI;	t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );	c = ( a - b )/2.0;	temp = sqrt( a * b );	a = ( a + b )/2.0;	b = temp;	d += d;	}temp = (atan(t) + mod * PI)/(d * a);done:if( sign < 0 )	temp = -temp;temp += npio2 * K;return( temp );}
 |