| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 | /*							j1.c * *	Bessel function of order one * * * * SYNOPSIS: * * double x, y, j1(); * * y = j1( x ); * * * * DESCRIPTION: * * Returns Bessel function of order one of the argument. * * The domain is divided into the intervals [0, 8] and * (8, infinity). In the first interval a 24 term Chebyshev * expansion is used. In the second, the asymptotic * trigonometric representation is employed using two * rational functions of degree 5/5. * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 30       10000       4.0e-17     1.1e-17 *    IEEE      0, 30       30000       2.6e-16     1.1e-16 * * *//*							y1.c * *	Bessel function of second kind of order one * * * * SYNOPSIS: * * double x, y, y1(); * * y = y1( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind of order one * of the argument. * * The domain is divided into the intervals [0, 8] and * (8, infinity). In the first interval a 25 term Chebyshev * expansion is used, and a call to j1() is required. * In the second, the asymptotic trigonometric representation * is employed using two rational functions of degree 5/5. * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 30       10000       8.6e-17     1.3e-17 *    IEEE      0, 30       30000       1.0e-15     1.3e-16 * * (error criterion relative when |y1| > 1). * *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier*//*#define PIO4 .78539816339744830962#define THPIO4 2.35619449019234492885#define SQ2OPI .79788456080286535588*/#include <math.h>#ifdef UNKstatic double RP[4] = {-8.99971225705559398224E8, 4.52228297998194034323E11,-7.27494245221818276015E13, 3.68295732863852883286E15,};static double RQ[8] = {/* 1.00000000000000000000E0,*/ 6.20836478118054335476E2, 2.56987256757748830383E5, 8.35146791431949253037E7, 2.21511595479792499675E10, 4.74914122079991414898E12, 7.84369607876235854894E14, 8.95222336184627338078E16, 5.32278620332680085395E18,};#endif#ifdef DECstatic unsigned short RP[16] = {0147526,0110742,0063322,0077052,0051722,0112720,0065034,0061530,0153604,0052227,0033147,0105650,0055121,0055025,0032276,0022015,};static unsigned short RQ[32] = {/*0040200,0000000,0000000,0000000,*/0042433,0032610,0155604,0033473,0044572,0173320,0067270,0006616,0046637,0045246,0162225,0006606,0050645,0004773,0157577,0053004,0052612,0033734,0001667,0176501,0054462,0054121,0173147,0121367,0056237,0002777,0121451,0176007,0057623,0136253,0131601,0044710,};#endif#ifdef IBMPCstatic unsigned short RP[16] = {0x4fc5,0x4cda,0xd23c,0xc1ca,0x8c6b,0x0d43,0x52ba,0x425a,0xf175,0xe6cc,0x8a92,0xc2d0,0xc482,0xa697,0x2b42,0x432a,};static unsigned short RQ[32] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x86e7,0x1b70,0x66b1,0x4083,0x01b2,0x0dd7,0x5eda,0x410f,0xa1b1,0xdc92,0xe954,0x4193,0xeac1,0x7bef,0xa13f,0x4214,0xffa8,0x8076,0x46fb,0x4291,0xf45f,0x3ecc,0x4b0a,0x4306,0x3f81,0xf465,0xe0bf,0x4373,0x2939,0x7670,0x7795,0x43d2,};#endif#ifdef MIEEEstatic unsigned short RP[16] = {0xc1ca,0xd23c,0x4cda,0x4fc5,0x425a,0x52ba,0x0d43,0x8c6b,0xc2d0,0x8a92,0xe6cc,0xf175,0x432a,0x2b42,0xa697,0xc482,};static unsigned short RQ[32] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x4083,0x66b1,0x1b70,0x86e7,0x410f,0x5eda,0x0dd7,0x01b2,0x4193,0xe954,0xdc92,0xa1b1,0x4214,0xa13f,0x7bef,0xeac1,0x4291,0x46fb,0x8076,0xffa8,0x4306,0x4b0a,0x3ecc,0xf45f,0x4373,0xe0bf,0xf465,0x3f81,0x43d2,0x7795,0x7670,0x2939,};#endif#ifdef UNKstatic double PP[7] = { 7.62125616208173112003E-4, 7.31397056940917570436E-2, 1.12719608129684925192E0, 5.11207951146807644818E0, 8.42404590141772420927E0, 5.21451598682361504063E0, 1.00000000000000000254E0,};static double PQ[7] = { 5.71323128072548699714E-4, 6.88455908754495404082E-2, 1.10514232634061696926E0, 5.07386386128601488557E0, 8.39985554327604159757E0, 5.20982848682361821619E0, 9.99999999999999997461E-1,};#endif#ifdef DECstatic unsigned short PP[28] = {0035507,0144542,0061543,0024326,0037225,0145105,0017766,0022661,0040220,0043766,0010254,0133255,0040643,0113047,0142611,0151521,0041006,0144344,0055351,0074261,0040646,0156520,0120574,0006416,0040200,0000000,0000000,0000000,};static unsigned short PQ[28] = {0035425,0142330,0115041,0165514,0037214,0177352,0145105,0052026,0040215,0072515,0141207,0073255,0040642,0056427,0137222,0106405,0041006,0062716,0166427,0165450,0040646,0133352,0035425,0123304,0040200,0000000,0000000,0000000,};#endif#ifdef IBMPCstatic unsigned short PP[28] = {0x651b,0x4c6c,0xf92c,0x3f48,0xc4b6,0xa3fe,0xb948,0x3fb2,0x96d6,0xc215,0x08fe,0x3ff2,0x3a6a,0xf8b1,0x72c4,0x4014,0x2f16,0x8b5d,0xd91c,0x4020,0x81a2,0x142f,0xdbaa,0x4014,0x0000,0x0000,0x0000,0x3ff0,};static unsigned short PQ[28] = {0x3d69,0x1344,0xb89b,0x3f42,0xaa83,0x5948,0x9fdd,0x3fb1,0xeed6,0xb850,0xaea9,0x3ff1,0x51a1,0xf7d2,0x4ba2,0x4014,0xfd65,0xdda2,0xccb9,0x4020,0xb4d9,0x4762,0xd6dd,0x4014,0x0000,0x0000,0x0000,0x3ff0,};#endif#ifdef MIEEEstatic unsigned short PP[28] = {0x3f48,0xf92c,0x4c6c,0x651b,0x3fb2,0xb948,0xa3fe,0xc4b6,0x3ff2,0x08fe,0xc215,0x96d6,0x4014,0x72c4,0xf8b1,0x3a6a,0x4020,0xd91c,0x8b5d,0x2f16,0x4014,0xdbaa,0x142f,0x81a2,0x3ff0,0x0000,0x0000,0x0000,};static unsigned short PQ[28] = {0x3f42,0xb89b,0x1344,0x3d69,0x3fb1,0x9fdd,0x5948,0xaa83,0x3ff1,0xaea9,0xb850,0xeed6,0x4014,0x4ba2,0xf7d2,0x51a1,0x4020,0xccb9,0xdda2,0xfd65,0x4014,0xd6dd,0x4762,0xb4d9,0x3ff0,0x0000,0x0000,0x0000,};#endif#ifdef UNKstatic double QP[8] = { 5.10862594750176621635E-2, 4.98213872951233449420E0, 7.58238284132545283818E1, 3.66779609360150777800E2, 7.10856304998926107277E2, 5.97489612400613639965E2, 2.11688757100572135698E2, 2.52070205858023719784E1,};static double QQ[7] = {/* 1.00000000000000000000E0,*/ 7.42373277035675149943E1, 1.05644886038262816351E3, 4.98641058337653607651E3, 9.56231892404756170795E3, 7.99704160447350683650E3, 2.82619278517639096600E3, 3.36093607810698293419E2,};#endif#ifdef DECstatic unsigned short QP[32] = {0037121,0037723,0055605,0151004,0040637,0066656,0031554,0077264,0041627,0122714,0153170,0161466,0042267,0061712,0036520,0140145,0042461,0133315,0131573,0071176,0042425,0057525,0147500,0013201,0042123,0130122,0061245,0154131,0041311,0123772,0064254,0172650,};static unsigned short QQ[28] = {/*0040200,0000000,0000000,0000000,*/0041624,0074603,0002112,0101670,0042604,0007135,0010162,0175565,0043233,0151510,0157757,0172010,0043425,0064506,0112006,0104276,0043371,0164125,0032271,0164242,0043060,0121425,0122750,0136013,0042250,0005773,0053472,0146267,};#endif#ifdef IBMPCstatic unsigned short QP[32] = {0xba40,0x6b70,0x27fa,0x3faa,0x8fd6,0xc66d,0xedb5,0x4013,0x1c67,0x9acf,0xf4b9,0x4052,0x180d,0x47aa,0xec79,0x4076,0x6e50,0xb66f,0x36d9,0x4086,0x02d0,0xb9e8,0xabea,0x4082,0xbb0b,0x4c54,0x760a,0x406a,0x9eb5,0x4d15,0x34ff,0x4039,};static unsigned short QQ[28] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x5077,0x6089,0x8f30,0x4052,0x5f6f,0xa20e,0x81cb,0x4090,0xfe81,0x1bfd,0x7a69,0x40b3,0xd118,0xd280,0xad28,0x40c2,0x3d14,0xa697,0x3d0a,0x40bf,0x1781,0xb4bd,0x1462,0x40a6,0x5997,0x6ae7,0x017f,0x4075,};#endif#ifdef MIEEEstatic unsigned short QP[32] = {0x3faa,0x27fa,0x6b70,0xba40,0x4013,0xedb5,0xc66d,0x8fd6,0x4052,0xf4b9,0x9acf,0x1c67,0x4076,0xec79,0x47aa,0x180d,0x4086,0x36d9,0xb66f,0x6e50,0x4082,0xabea,0xb9e8,0x02d0,0x406a,0x760a,0x4c54,0xbb0b,0x4039,0x34ff,0x4d15,0x9eb5,};static unsigned short QQ[28] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x4052,0x8f30,0x6089,0x5077,0x4090,0x81cb,0xa20e,0x5f6f,0x40b3,0x7a69,0x1bfd,0xfe81,0x40c2,0xad28,0xd280,0xd118,0x40bf,0x3d0a,0xa697,0x3d14,0x40a6,0x1462,0xb4bd,0x1781,0x4075,0x017f,0x6ae7,0x5997,};#endif#ifdef UNKstatic double YP[6] = { 1.26320474790178026440E9,-6.47355876379160291031E11, 1.14509511541823727583E14,-8.12770255501325109621E15, 2.02439475713594898196E17,-7.78877196265950026825E17,};static double YQ[8] = {/* 1.00000000000000000000E0,*/ 5.94301592346128195359E2, 2.35564092943068577943E5, 7.34811944459721705660E7, 1.87601316108706159478E10, 3.88231277496238566008E12, 6.20557727146953693363E14, 6.87141087355300489866E16, 3.97270608116560655612E18,};#endif#ifdef DECstatic unsigned short YP[24] = {0047626,0112763,0013715,0133045,0152026,0134552,0142033,0024411,0053720,0045245,0102210,0077565,0155347,0000321,0136415,0102031,0056463,0146550,0055633,0032605,0157054,0171012,0167361,0054265,};static unsigned short YQ[32] = {/*0040200,0000000,0000000,0000000,*/0042424,0111515,0044773,0153014,0044546,0005405,0171307,0075774,0046614,0023575,0047105,0063556,0050613,0143034,0101533,0156026,0052541,0175367,0166514,0114257,0054415,0014466,0134350,0171154,0056164,0017436,0025075,0022101,0057534,0103614,0103663,0121772,};#endif#ifdef IBMPCstatic unsigned short YP[24] = {0xb6c5,0x62f9,0xd2be,0x41d2,0x6521,0x5883,0xd72d,0xc262,0x0fef,0xb091,0x0954,0x42da,0xb083,0x37a1,0xe01a,0xc33c,0x66b1,0x0b73,0x79ad,0x4386,0x2b17,0x5dde,0x9e41,0xc3a5,};static unsigned short YQ[32] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x7ac2,0xa93f,0x9269,0x4082,0xef7f,0xbe58,0xc160,0x410c,0xacee,0xa9c8,0x84ef,0x4191,0x7b83,0x906b,0x78c3,0x4211,0x9316,0xfda9,0x3f5e,0x428c,0x1e4e,0xd71d,0xa326,0x4301,0xa488,0xc547,0x83e3,0x436e,0x747f,0x90f6,0x90f1,0x43cb,};#endif#ifdef MIEEEstatic unsigned short YP[24] = {0x41d2,0xd2be,0x62f9,0xb6c5,0xc262,0xd72d,0x5883,0x6521,0x42da,0x0954,0xb091,0x0fef,0xc33c,0xe01a,0x37a1,0xb083,0x4386,0x79ad,0x0b73,0x66b1,0xc3a5,0x9e41,0x5dde,0x2b17,};static unsigned short YQ[32] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x4082,0x9269,0xa93f,0x7ac2,0x410c,0xc160,0xbe58,0xef7f,0x4191,0x84ef,0xa9c8,0xacee,0x4211,0x78c3,0x906b,0x7b83,0x428c,0x3f5e,0xfda9,0x9316,0x4301,0xa326,0xd71d,0x1e4e,0x436e,0x83e3,0xc547,0xa488,0x43cb,0x90f1,0x90f6,0x747f,};#endif#ifdef UNKstatic double Z1 = 1.46819706421238932572E1;static double Z2 = 4.92184563216946036703E1;#endif#ifdef DECstatic unsigned short DZ1[] = {0041152,0164532,0006114,0010540};static unsigned short DZ2[] = {0041504,0157663,0001625,0020621};#define Z1 (*(double *)DZ1)#define Z2 (*(double *)DZ2)#endif#ifdef IBMPCstatic unsigned short DZ1[] = {0x822c,0x4189,0x5d2b,0x402d};static unsigned short DZ2[] = {0xa432,0x6072,0x9bf6,0x4048};#define Z1 (*(double *)DZ1)#define Z2 (*(double *)DZ2)#endif#ifdef MIEEEstatic unsigned short DZ1[] = {0x402d,0x5d2b,0x4189,0x822c};static unsigned short DZ2[] = {0x4048,0x9bf6,0x6072,0xa432};#define Z1 (*(double *)DZ1)#define Z2 (*(double *)DZ2)#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double p1evl ( double, void *, int );extern double log ( double );extern double sin ( double );extern double cos ( double );extern double sqrt ( double );double j1 ( double );#elsedouble polevl(), p1evl(), log(), sin(), cos(), sqrt();double j1();#endifextern double TWOOPI, THPIO4, SQ2OPI;double j1(x)double x;{double w, z, p, q, xn;w = x;if( x < 0 )	w = -x;if( w <= 5.0 )	{	z = x * x;		w = polevl( z, RP, 3 ) / p1evl( z, RQ, 8 );	w = w * x * (z - Z1) * (z - Z2);	return( w );	}w = 5.0/x;z = w * w;p = polevl( z, PP, 6)/polevl( z, PQ, 6 );q = polevl( z, QP, 7)/p1evl( z, QQ, 7 );xn = x - THPIO4;p = p * cos(xn) - w * q * sin(xn);return( p * SQ2OPI / sqrt(x) );}extern double MAXNUM;double y1(x)double x;{double w, z, p, q, xn;if( x <= 5.0 )	{	if( x <= 0.0 )		{		mtherr( "y1", DOMAIN );		return( -MAXNUM );		}	z = x * x;	w = x * (polevl( z, YP, 5 ) / p1evl( z, YQ, 8 ));	w += TWOOPI * ( j1(x) * log(x)  -  1.0/x );	return( w );	}w = 5.0/x;z = w * w;p = polevl( z, PP, 6)/polevl( z, PQ, 6 );q = polevl( z, QP, 7)/p1evl( z, QQ, 7 );xn = x - THPIO4;p = p * sin(xn) + w * q * cos(xn);return( p * SQ2OPI / sqrt(x) );}
 |