| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 | /*							kn.c * *	Modified Bessel function, third kind, integer order * * * * SYNOPSIS: * * double x, y, kn(); * int n; * * y = kn( n, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order n of the argument. * * The range is partitioned into the two intervals [0,9.55] and * (9.55, infinity).  An ascending power series is used in the * low range, and an asymptotic expansion in the high range. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,30         3000       1.3e-9      5.8e-11 *    IEEE      0,30        90000       1.8e-8      3.0e-10 * *  Error is high only near the crossover point x = 9.55 * between the two expansions used. *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier*//*Algorithm for Kn.                       n-1                    -n   -  (n-k-1)!    2   kK (x)  =  0.5 (x/2)     >  -------- (-x /4) n                      -     k!                       k=0                    inf.                                   2   k       n         n   -                                   (x /4) + (-1)  0.5(x/2)    >  {p(k+1) + p(n+k+1) - 2log(x/2)} ---------                     -                                  k! (n+k)!                    k=0where  p(m) is the psi function: p(1) = -EUL and                      m-1                       -      p(m)  =  -EUL +  >  1/k                       -                      k=1For large x,                                         2        2     2                                      u-1     (u-1 )(u-3 )K (z)  =  sqrt(pi/2z) exp(-z) { 1 + ------- + ------------ + ...} v                                        1            2                                    1! (8z)     2! (8z)asymptotically, where           2    u = 4 v .*/#include <math.h>#define EUL 5.772156649015328606065e-1#define MAXFAC 31#ifdef ANSIPROTextern double fabs ( double );extern double exp ( double );extern double log ( double );extern double sqrt ( double );#elsedouble fabs(), exp(), log(), sqrt();#endifextern double MACHEP, MAXNUM, MAXLOG, PI;double kn( nn, x )int nn;double x;{double k, kf, nk1f, nkf, zn, t, s, z0, z;double ans, fn, pn, pk, zmn, tlg, tox;int i, n;if( nn < 0 )	n = -nn;else	n = nn;if( n > MAXFAC )	{overf:	mtherr( "kn", OVERFLOW );	return( MAXNUM );	}if( x <= 0.0 )	{	if( x < 0.0 )		mtherr( "kn", DOMAIN );	else		mtherr( "kn", SING );	return( MAXNUM );	}if( x > 9.55 )	goto asymp;ans = 0.0;z0 = 0.25 * x * x;fn = 1.0;pn = 0.0;zmn = 1.0;tox = 2.0/x;if( n > 0 )	{	/* compute factorial of n and psi(n) */	pn = -EUL;	k = 1.0;	for( i=1; i<n; i++ )		{		pn += 1.0/k;		k += 1.0;		fn *= k;		}	zmn = tox;	if( n == 1 )		{		ans = 1.0/x;		}	else		{		nk1f = fn/n;		kf = 1.0;		s = nk1f;		z = -z0;		zn = 1.0;		for( i=1; i<n; i++ )			{			nk1f = nk1f/(n-i);			kf = kf * i;			zn *= z;			t = nk1f * zn / kf;			s += t;   			if( (MAXNUM - fabs(t)) < fabs(s) )				goto overf;			if( (tox > 1.0) && ((MAXNUM/tox) < zmn) )				goto overf;			zmn *= tox;			}		s *= 0.5;		t = fabs(s);		if( (zmn > 1.0) && ((MAXNUM/zmn) < t) )			goto overf;		if( (t > 1.0) && ((MAXNUM/t) < zmn) )			goto overf;		ans = s * zmn;		}	}tlg = 2.0 * log( 0.5 * x );pk = -EUL;if( n == 0 )	{	pn = pk;	t = 1.0;	}else	{	pn = pn + 1.0/n;	t = 1.0/fn;	}s = (pk+pn-tlg)*t;k = 1.0;do	{	t *= z0 / (k * (k+n));	pk += 1.0/k;	pn += 1.0/(k+n);	s += (pk+pn-tlg)*t;	k += 1.0;	}while( fabs(t/s) > MACHEP );s = 0.5 * s / zmn;if( n & 1 )	s = -s;ans += s;return(ans);/* Asymptotic expansion for Kn(x) *//* Converges to 1.4e-17 for x > 18.4 */asymp:if( x > MAXLOG )	{	mtherr( "kn", UNDERFLOW );	return(0.0);	}k = n;pn = 4.0 * k * k;pk = 1.0;z0 = 8.0 * x;fn = 1.0;t = 1.0;s = t;nkf = MAXNUM;i = 0;do	{	z = pn - pk * pk;	t = t * z /(fn * z0);	nk1f = fabs(t);	if( (i >= n) && (nk1f > nkf) )		{		goto adone;		}	nkf = nk1f;	s += t;	fn += 1.0;	pk += 2.0;	i += 1;	}while( fabs(t/s) > MACHEP );adone:ans = exp(-x) * sqrt( PI/(2.0*x) ) * s;return(ans);}
 |