| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 | /*							ndtri.c * *	Inverse of Normal distribution function * * * * SYNOPSIS: * * double x, y, ndtri(); * * x = ndtri( y ); * * * * DESCRIPTION: * * Returns the argument, x, for which the area under the * Gaussian probability density function (integrated from * minus infinity to x) is equal to y. * * * For small arguments 0 < y < exp(-2), the program computes * z = sqrt( -2.0 * log(y) );  then the approximation is * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z). * There are two rational functions P/Q, one for 0 < y < exp(-32) * and the other for y up to exp(-2).  For larger arguments, * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). * * * ACCURACY: * *                      Relative error: * arithmetic   domain        # trials      peak         rms *    DEC      0.125, 1         5500       9.5e-17     2.1e-17 *    DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17 *    IEEE     0.125, 1        20000       7.2e-16     1.3e-16 *    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17 * * * ERROR MESSAGES: * *   message         condition    value returned * ndtri domain       x <= 0        -MAXNUM * ndtri domain       x >= 1         MAXNUM * *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier*/#include <math.h>extern double MAXNUM;#ifdef UNK/* sqrt(2pi) */static double s2pi = 2.50662827463100050242E0;#endif#ifdef DECstatic unsigned short s2p[] = {0040440,0066230,0177661,0034055};#define s2pi *(double *)s2p#endif#ifdef IBMPCstatic unsigned short s2p[] = {0x2706,0x1ff6,0x0d93,0x4004};#define s2pi *(double *)s2p#endif#ifdef MIEEEstatic unsigned short s2p[] = {0x4004,0x0d93,0x1ff6,0x2706};#define s2pi *(double *)s2p#endif/* approximation for 0 <= |y - 0.5| <= 3/8 */#ifdef UNKstatic double P0[5] = {-5.99633501014107895267E1, 9.80010754185999661536E1,-5.66762857469070293439E1, 1.39312609387279679503E1,-1.23916583867381258016E0,};static double Q0[8] = {/* 1.00000000000000000000E0,*/ 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1,-2.25462687854119370527E2, 2.00260212380060660359E2,-8.20372256168333339912E1, 1.59056225126211695515E1,-1.18331621121330003142E0,};#endif#ifdef DECstatic unsigned short P0[20] = {0141557,0155170,0071360,0120550,0041704,0000214,0172417,0067307,0141542,0132204,0040066,0156723,0041136,0163161,0157276,0007747,0140236,0116374,0073666,0051764,};static unsigned short Q0[32] = {/*0040200,0000000,0000000,0000000,*/0040372,0026256,0110403,0123707,0040625,0122024,0020277,0026661,0041654,0134161,0124134,0007244,0142141,0073162,0133021,0131371,0042110,0041235,0043516,0057767,0141644,0011417,0036155,0137305,0041176,0076556,0004043,0125430,0140227,0073347,0152776,0067251,};#endif#ifdef IBMPCstatic unsigned short P0[20] = {0x142d,0x0e5e,0xfb4f,0xc04d,0xedd9,0x9ea1,0x8011,0x4058,0xdbba,0x8806,0x5690,0xc04c,0xc1fd,0x3bd7,0xdcce,0x402b,0xca7e,0x8ef6,0xd39f,0xbff3,};static unsigned short Q0[36] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x74f9,0xd220,0x4595,0x3fff,0xe5b6,0x8417,0xb482,0x4012,0x81d4,0x350b,0x970e,0x4055,0x365f,0x56c2,0x2ece,0xc06c,0xcbff,0xa8e9,0x0853,0x4069,0xb7d9,0xe78d,0x8261,0xc054,0x7563,0xc104,0xcfad,0x402f,0xcdd5,0xfabf,0xeedc,0xbff2,};#endif#ifdef MIEEEstatic unsigned short P0[20] = {0xc04d,0xfb4f,0x0e5e,0x142d,0x4058,0x8011,0x9ea1,0xedd9,0xc04c,0x5690,0x8806,0xdbba,0x402b,0xdcce,0x3bd7,0xc1fd,0xbff3,0xd39f,0x8ef6,0xca7e,};static unsigned short Q0[32] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x3fff,0x4595,0xd220,0x74f9,0x4012,0xb482,0x8417,0xe5b6,0x4055,0x970e,0x350b,0x81d4,0xc06c,0x2ece,0x56c2,0x365f,0x4069,0x0853,0xa8e9,0xcbff,0xc054,0x8261,0xe78d,0xb7d9,0x402f,0xcfad,0xc104,0x7563,0xbff2,0xeedc,0xfabf,0xcdd5,};#endif/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */#ifdef UNKstatic double P1[9] = { 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0,-1.40256079171354495875E-1,-3.50424626827848203418E-2,-8.57456785154685413611E-4,};static double Q1[8] = {/*  1.00000000000000000000E0,*/ 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0,-1.42182922854787788574E-1,-3.80806407691578277194E-2,-9.33259480895457427372E-4,};#endif#ifdef DECstatic unsigned short P1[36] = {0040601,0143074,0150744,0073326,0041374,0031554,0113253,0146016,0041544,0123272,0012463,0176771,0041460,0051160,0103560,0156511,0041152,0172624,0117772,0030755,0040413,0170713,0151545,0176413,0137417,0117512,0022154,0131671,0137017,0104257,0071432,0007072,0135540,0143363,0063137,0036166,};static unsigned short Q1[32] = {/*0040200,0000000,0000000,0000000,*/0041174,0075325,0004736,0120326,0041465,0110044,0047561,0045567,0041445,0042321,0012142,0030340,0041160,0127074,0166076,0141051,0040440,0046055,0040745,0150400,0137421,0114146,0067330,0010621,0137033,0175162,0025555,0114351,0135564,0122773,0145750,0030357,};#endif#ifdef IBMPCstatic unsigned short P1[36] = {0x8edb,0x9a3c,0x38c7,0x4010,0x7982,0x92d5,0x866d,0x403f,0x7fbf,0x42a6,0x94d7,0x404c,0x1ba9,0x10ee,0x0a4e,0x4046,0x463e,0x93ff,0x5eb2,0x402d,0xbfa1,0x7a6c,0x7e39,0x4001,0x9677,0x448d,0xf3e9,0xbfc1,0x41c7,0xee63,0xf115,0xbfa1,0xe78f,0x6ccb,0x18de,0xbf4c,};static unsigned short Q1[32] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0xd41b,0xa13b,0x8f5a,0x402f,0x296f,0x89ee,0xb204,0x4046,0x461c,0x228c,0xa89a,0x4044,0xd845,0x9d87,0x15c7,0x402e,0xba20,0xa83c,0x0985,0x4004,0x0232,0xcddb,0x330c,0xbfc2,0xb31d,0x456d,0x7f4e,0xbfa3,0x061e,0x797d,0x94bf,0xbf4e,};#endif#ifdef MIEEEstatic unsigned short P1[36] = {0x4010,0x38c7,0x9a3c,0x8edb,0x403f,0x866d,0x92d5,0x7982,0x404c,0x94d7,0x42a6,0x7fbf,0x4046,0x0a4e,0x10ee,0x1ba9,0x402d,0x5eb2,0x93ff,0x463e,0x4001,0x7e39,0x7a6c,0xbfa1,0xbfc1,0xf3e9,0x448d,0x9677,0xbfa1,0xf115,0xee63,0x41c7,0xbf4c,0x18de,0x6ccb,0xe78f,};static unsigned short Q1[32] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x402f,0x8f5a,0xa13b,0xd41b,0x4046,0xb204,0x89ee,0x296f,0x4044,0xa89a,0x228c,0x461c,0x402e,0x15c7,0x9d87,0xd845,0x4004,0x0985,0xa83c,0xba20,0xbfc2,0x330c,0xcddb,0x0232,0xbfa3,0x7f4e,0x456d,0xb31d,0xbf4e,0x94bf,0x797d,0x061e,};#endif/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */#ifdef UNKstatic double P2[9] = {  3.23774891776946035970E0,  6.91522889068984211695E0,  3.93881025292474443415E0,  1.33303460815807542389E0,  2.01485389549179081538E-1,  1.23716634817820021358E-2,  3.01581553508235416007E-4,  2.65806974686737550832E-6,  6.23974539184983293730E-9,};static double Q2[8] = {/*  1.00000000000000000000E0,*/  6.02427039364742014255E0,  3.67983563856160859403E0,  1.37702099489081330271E0,  2.16236993594496635890E-1,  1.34204006088543189037E-2,  3.28014464682127739104E-4,  2.89247864745380683936E-6,  6.79019408009981274425E-9,};#endif#ifdef DECstatic unsigned short P2[36] = {0040517,0033507,0036236,0125641,0040735,0044616,0014473,0140133,0040574,0012567,0114535,0102541,0040252,0120340,0143474,0150135,0037516,0051057,0115361,0031211,0036512,0131204,0101511,0125144,0035236,0016627,0043160,0140216,0033462,0060512,0060141,0010641,0031326,0062541,0101304,0077706,};static unsigned short Q2[32] = {/*0040200,0000000,0000000,0000000,*/0040700,0143322,0132137,0040501,0040553,0101155,0053221,0140257,0040260,0041071,0052573,0010004,0037535,0066472,0177261,0162330,0036533,0160475,0066666,0036132,0035253,0174533,0027771,0044027,0033502,0016147,0117666,0063671,0031351,0047455,0141663,0054751,};#endif#ifdef IBMPCstatic unsigned short P2[36] = {0xd574,0xe793,0xe6e8,0x4009,0x780b,0xc327,0xa931,0x401b,0xb0ac,0xf32b,0x82ae,0x400f,0x9a0c,0x18e7,0x541c,0x3ff5,0x2651,0xf35e,0xca45,0x3fc9,0x354d,0x9069,0x5650,0x3f89,0x1812,0xe8ce,0xc3b2,0x3f33,0x2234,0x4c0c,0x4c29,0x3ec6,0x8ff9,0x3058,0xccac,0x3e3a,};static unsigned short Q2[32] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0xe828,0x568b,0x18da,0x4018,0x3816,0xaad2,0x704d,0x400d,0x6200,0x2aaf,0x0847,0x3ff6,0x3c9b,0x5fd6,0xada7,0x3fcb,0xc78b,0xadb6,0x7c27,0x3f8b,0x2903,0x65ff,0x7f2b,0x3f35,0xccf7,0xf3f6,0x438c,0x3ec8,0x6b3d,0xb876,0x29e5,0x3e3d,};#endif#ifdef MIEEEstatic unsigned short P2[36] = {0x4009,0xe6e8,0xe793,0xd574,0x401b,0xa931,0xc327,0x780b,0x400f,0x82ae,0xf32b,0xb0ac,0x3ff5,0x541c,0x18e7,0x9a0c,0x3fc9,0xca45,0xf35e,0x2651,0x3f89,0x5650,0x9069,0x354d,0x3f33,0xc3b2,0xe8ce,0x1812,0x3ec6,0x4c29,0x4c0c,0x2234,0x3e3a,0xccac,0x3058,0x8ff9,};static unsigned short Q2[32] = {/*0x3ff0,0x0000,0x0000,0x0000,*/0x4018,0x18da,0x568b,0xe828,0x400d,0x704d,0xaad2,0x3816,0x3ff6,0x0847,0x2aaf,0x6200,0x3fcb,0xada7,0x5fd6,0x3c9b,0x3f8b,0x7c27,0xadb6,0xc78b,0x3f35,0x7f2b,0x65ff,0x2903,0x3ec8,0x438c,0xf3f6,0xccf7,0x3e3d,0x29e5,0xb876,0x6b3d,};#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double p1evl ( double, void *, int );extern double log ( double );extern double sqrt ( double );#elsedouble polevl(), p1evl(), log(), sqrt();#endifdouble ndtri(y0)double y0;{double x, y, z, y2, x0, x1;int code;if( y0 <= 0.0 )	{	mtherr( "ndtri", DOMAIN );	return( -MAXNUM );	}if( y0 >= 1.0 )	{	mtherr( "ndtri", DOMAIN );	return( MAXNUM );	}code = 1;y = y0;if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */	{	y = 1.0 - y;	code = 0;	}if( y > 0.13533528323661269189 )	{	y = y - 0.5;	y2 = y * y;	x = y + y * (y2 * polevl( y2, P0, 4)/p1evl( y2, Q0, 8 ));	x = x * s2pi; 	return(x);	}x = sqrt( -2.0 * log(y) );x0 = x - log(x)/x;z = 1.0/x;if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */	x1 = z * polevl( z, P1, 8 )/p1evl( z, Q1, 8 );else	x1 = z * polevl( z, P2, 8 )/p1evl( z, Q2, 8 );x = x0 - x1;if( code != 0 )	x = -x;return( x );}
 |