| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 | /*							polyn.c *							polyr.c * Arithmetic operations on polynomials * * In the following descriptions a, b, c are polynomials of degree * na, nb, nc respectively.  The degree of a polynomial cannot * exceed a run-time value MAXPOL.  An operation that attempts * to use or generate a polynomial of higher degree may produce a * result that suffers truncation at degree MAXPOL.  The value of * MAXPOL is set by calling the function * *     polini( maxpol ); * * where maxpol is the desired maximum degree.  This must be * done prior to calling any of the other functions in this module. * Memory for internal temporary polynomial storage is allocated * by polini(). * * Each polynomial is represented by an array containing its * coefficients, together with a separately declared integer equal * to the degree of the polynomial.  The coefficients appear in * ascending order; that is, * *                                        2                      na * a(x)  =  a[0]  +  a[1] * x  +  a[2] * x   +  ...  +  a[na] * x  . * * * * sum = poleva( a, na, x );	Evaluate polynomial a(t) at t = x. * polprt( a, na, D );		Print the coefficients of a to D digits. * polclr( a, na );		Set a identically equal to zero, up to a[na]. * polmov( a, na, b );		Set b = a. * poladd( a, na, b, nb, c );	c = b + a, nc = max(na,nb) * polsub( a, na, b, nb, c );	c = b - a, nc = max(na,nb) * polmul( a, na, b, nb, c );	c = b * a, nc = na+nb * * * Division: * * i = poldiv( a, na, b, nb, c );	c = b / a, nc = MAXPOL * * returns i = the degree of the first nonzero coefficient of a. * The computed quotient c must be divided by x^i.  An error message * is printed if a is identically zero. * * * Change of variables: * If a and b are polynomials, and t = a(x), then *     c(t) = b(a(x)) * is a polynomial found by substituting a(x) for t.  The * subroutine call for this is * * polsbt( a, na, b, nb, c ); * * * Notes: * poldiv() is an integer routine; poleva() is double. * Any of the arguments a, b, c may refer to the same array. * */#include <stdio.h>#include <math.h>#if ANSIPROTvoid exit (int);extern void * malloc ( long );extern void free ( void * );void polclr ( double *, int );void polmov ( double *, int, double * );void polmul ( double *, int, double *, int, double * );int poldiv ( double *, int, double *, int, double * );#elsevoid exit();void * malloc();void free ();void polclr(), polmov(), poldiv(), polmul();#endif#ifndef NULL#define NULL 0#endif/* near pointer version of malloc() *//*#define malloc _nmalloc#define free _nfree*//* Pointers to internal arrays.  Note poldiv() allocates * and deallocates some temporary arrays every time it is called. */static double *pt1 = 0;static double *pt2 = 0;static double *pt3 = 0;/* Maximum degree of polynomial. */int MAXPOL = 0;extern int MAXPOL;/* Number of bytes (chars) in maximum size polynomial. */static int psize = 0;/* Initialize max degree of polynomials * and allocate temporary storage. */void polini( maxdeg )int maxdeg;{MAXPOL = maxdeg;psize = (maxdeg + 1) * sizeof(double);/* Release previously allocated memory, if any. */if( pt3 )	free(pt3);if( pt2 )	free(pt2);if( pt1 )	free(pt1);/* Allocate new arrays */pt1 = (double * )malloc(psize); /* used by polsbt */pt2 = (double * )malloc(psize); /* used by polsbt */pt3 = (double * )malloc(psize); /* used by polmul *//* Report if failure */if( (pt1 == NULL) || (pt2 == NULL) || (pt3 == NULL) )	{	mtherr( "polini", ERANGE );	exit(1);	}}/* Print the coefficients of a, with d decimal precision. */static char *form = "abcdefghijk";void polprt( a, na, d )double a[];int na, d;{int i, j, d1;char *p;/* Create format descriptor string for the printout. * Do this partly by hand, since sprintf() may be too * bug-ridden to accomplish this feat by itself. */p = form;*p++ = '%';d1 = d + 8;sprintf( p, "%d ", d1 );p += 1;if( d1 >= 10 )	p += 1;*p++ = '.';sprintf( p, "%d ", d );p += 1;if( d >= 10 )	p += 1;*p++ = 'e';*p++ = ' ';*p++ = '\0';/* Now do the printing. */d1 += 1;j = 0;for( i=0; i<=na; i++ )	{/* Detect end of available line */	j += d1;	if( j >= 78 )		{		printf( "\n" );		j = d1;		}	printf( form, a[i] );	}printf( "\n" );}/* Set a = 0. */void polclr( a, n )register double *a;int n;{int i;if( n > MAXPOL )	n = MAXPOL;for( i=0; i<=n; i++ )	*a++ = 0.0;}/* Set b = a. */void polmov( a, na, b )register double *a, *b;int na;{int i;if( na > MAXPOL )	na = MAXPOL;for( i=0; i<= na; i++ )	{	*b++ = *a++;	}}/* c = b * a. */void polmul( a, na, b, nb, c )double a[], b[], c[];int na, nb;{int i, j, k, nc;double x;nc = na + nb;polclr( pt3, MAXPOL );for( i=0; i<=na; i++ )	{	x = a[i];	for( j=0; j<=nb; j++ )		{		k = i + j;		if( k > MAXPOL )			break;		pt3[k] += x * b[j];		}	}if( nc > MAXPOL )	nc = MAXPOL;for( i=0; i<=nc; i++ )	c[i] = pt3[i];} /* c = b + a. */void poladd( a, na, b, nb, c )double a[], b[], c[];int na, nb;{int i, n;if( na > nb )	n = na;else	n = nb;if( n > MAXPOL )	n = MAXPOL;for( i=0; i<=n; i++ )	{	if( i > na )		c[i] = b[i];	else if( i > nb )		c[i] = a[i];	else		c[i] = b[i] + a[i];	}}/* c = b - a. */void polsub( a, na, b, nb, c )double a[], b[], c[];int na, nb;{int i, n;if( na > nb )	n = na;else	n = nb;if( n > MAXPOL )	n = MAXPOL;for( i=0; i<=n; i++ )	{	if( i > na )		c[i] = b[i];	else if( i > nb )		c[i] = -a[i];	else		c[i] = b[i] - a[i];	}}/* c = b/a */int poldiv( a, na, b, nb, c )double a[], b[], c[];int na, nb;{double quot;double *ta, *tb, *tq;int i, j, k, sing;sing = 0;/* Allocate temporary arrays.  This would be quicker * if done automatically on the stack, but stack space * may be hard to obtain on a small computer. */ta = (double * )malloc( psize );polclr( ta, MAXPOL );polmov( a, na, ta );tb = (double * )malloc( psize );polclr( tb, MAXPOL );polmov( b, nb, tb );tq = (double * )malloc( psize );polclr( tq, MAXPOL );/* What to do if leading (constant) coefficient * of denominator is zero. */if( a[0] == 0.0 )	{	for( i=0; i<=na; i++ )		{		if( ta[i] != 0.0 )			goto nzero;		}	mtherr( "poldiv", SING );	goto done;nzero:/* Reduce the degree of the denominator. */	for( i=0; i<na; i++ )		ta[i] = ta[i+1];	ta[na] = 0.0;	if( b[0] != 0.0 )		{/* Optional message:		printf( "poldiv singularity, divide quotient by x\n" );*/		sing += 1;		}	else		{/* Reduce degree of numerator. */		for( i=0; i<nb; i++ )			tb[i] = tb[i+1];		tb[nb] = 0.0;		}/* Call self, using reduced polynomials. */	sing += poldiv( ta, na, tb, nb, c );	goto done;	}/* Long division algorithm.  ta[0] is nonzero. */for( i=0; i<=MAXPOL; i++ )	{	quot = tb[i]/ta[0];	for( j=0; j<=MAXPOL; j++ )		{		k = j + i;		if( k > MAXPOL )			break;		tb[k] -= quot * ta[j];		}	tq[i] = quot;	}/* Send quotient to output array. */polmov( tq, MAXPOL, c );done:/* Restore allocated memory. */free(tq);free(tb);free(ta);return( sing );}/* Change of variables * Substitute a(y) for the variable x in b(x). * x = a(y) * c(x) = b(x) = b(a(y)). */void polsbt( a, na, b, nb, c )double a[], b[], c[];int na, nb;{int i, j, k, n2;double x;/* 0th degree term: */polclr( pt1, MAXPOL );pt1[0] = b[0];polclr( pt2, MAXPOL );pt2[0] = 1.0;n2 = 0;for( i=1; i<=nb; i++ )	{/* Form ith power of a. */	polmul( a, na, pt2, n2, pt2 );	n2 += na;	x = b[i];/* Add the ith coefficient of b times the ith power of a. */	for( j=0; j<=n2; j++ )		{		if( j > MAXPOL )			break;		pt1[j] += x * pt2[j];		}	}k = n2 + nb;if( k > MAXPOL )	k = MAXPOL;for( i=0; i<=k; i++ )	c[i] = pt1[i];}/* Evaluate polynomial a(t) at t = x. */double poleva( a, na, x )double a[];int na;double x;{double s;int i;s = a[na];for( i=na-1; i>=0; i-- )	{	s = s * x + a[i];	}return(s);}
 |