| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | /*						rgamma.c * *	Reciprocal gamma function * * * * SYNOPSIS: * * double x, y, rgamma(); * * y = rgamma( x ); * * * * DESCRIPTION: * * Returns one divided by the gamma function of the argument. * * The function is approximated by a Chebyshev expansion in * the interval [0,1].  Range reduction is by recurrence * for arguments between -34.034 and +34.84425627277176174. * 1/MAXNUM is returned for positive arguments outside this * range.  For arguments less than -34.034 the cosecant * reflection formula is applied; lograrithms are employed * to avoid unnecessary overflow. * * The reciprocal gamma function has no singularities, * but overflow and underflow may occur for large arguments. * These conditions return either MAXNUM or 1/MAXNUM with * appropriate sign. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -30,+30       4000       1.2e-16     1.8e-17 *    IEEE     -30,+30      30000       1.1e-15     2.0e-16 * For arguments less than -34.034 the peak error is on the * order of 5e-15 (DEC), excepting overflow or underflow. *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1985, 1987, 2000 by Stephen L. Moshier*/#include <math.h>/* Chebyshev coefficients for reciprocal gamma function * in interval 0 to 1.  Function is 1/(x gamma(x)) - 1 */#ifdef UNKstatic double R[] = { 3.13173458231230000000E-17,-6.70718606477908000000E-16, 2.20039078172259550000E-15, 2.47691630348254132600E-13,-6.60074100411295197440E-12, 5.13850186324226978840E-11, 1.08965386454418662084E-9,-3.33964630686836942556E-8, 2.68975996440595483619E-7, 2.96001177518801696639E-6,-8.04814124978471142852E-5, 4.16609138709688864714E-4, 5.06579864028608725080E-3,-6.41925436109158228810E-2,-4.98558728684003594785E-3, 1.27546015610523951063E-1};#endif#ifdef DECstatic unsigned short R[] = {0022420,0066376,0176751,0071636,0123501,0051114,0042104,0131153,0024036,0107013,0126504,0033361,0025613,0070040,0035174,0162316,0126750,0037060,0077775,0122202,0027541,0177143,0037675,0105150,0030625,0141311,0075005,0115436,0132017,0067714,0125033,0014721,0032620,0063707,0105256,0152643,0033506,0122235,0072757,0170053,0134650,0144041,0015617,0016143,0035332,0066125,0000776,0006215,0036245,0177377,0137173,0131432,0137203,0073541,0055645,0141150,0136243,0057043,0026226,0017362,0037402,0115554,0033441,0012310};#endif#ifdef IBMPCstatic unsigned short R[] = {0x2e74,0xdfbd,0x0d9f,0x3c82,0x964d,0x8888,0x2a49,0xbcc8,0x86de,0x75a8,0xd1c1,0x3ce3,0x9c9a,0x074f,0x6e04,0x3d51,0xb490,0x0fff,0x07c6,0xbd9d,0xb14d,0x67f7,0x3fcc,0x3dcc,0xb364,0x2f40,0xb859,0x3e12,0x633a,0x9543,0xedf9,0xbe61,0xdab4,0xf155,0x0cf8,0x3e92,0xfe05,0xaebd,0xd493,0x3ec8,0xe38c,0x2371,0x1904,0xbf15,0xc192,0xa03f,0x4d8a,0x3f3b,0x7663,0xf7cf,0xbfdf,0x3f74,0xb84d,0x2b74,0x6eec,0xbfb0,0xc3de,0x6592,0x6bc4,0xbf74,0x2299,0x86e4,0x536d,0x3fc0};#endif#ifdef MIEEEstatic unsigned short R[] = {0x3c82,0x0d9f,0xdfbd,0x2e74,0xbcc8,0x2a49,0x8888,0x964d,0x3ce3,0xd1c1,0x75a8,0x86de,0x3d51,0x6e04,0x074f,0x9c9a,0xbd9d,0x07c6,0x0fff,0xb490,0x3dcc,0x3fcc,0x67f7,0xb14d,0x3e12,0xb859,0x2f40,0xb364,0xbe61,0xedf9,0x9543,0x633a,0x3e92,0x0cf8,0xf155,0xdab4,0x3ec8,0xd493,0xaebd,0xfe05,0xbf15,0x1904,0x2371,0xe38c,0x3f3b,0x4d8a,0xa03f,0xc192,0x3f74,0xbfdf,0xf7cf,0x7663,0xbfb0,0x6eec,0x2b74,0xb84d,0xbf74,0x6bc4,0x6592,0xc3de,0x3fc0,0x536d,0x86e4,0x2299};#endifstatic char name[] = "rgamma";#ifdef ANSIPROTextern double chbevl ( double, void *, int );extern double exp ( double );extern double log ( double );extern double sin ( double );extern double lgam ( double );#elsedouble chbevl(), exp(), log(), sin(), lgam();#endifextern double PI, MAXLOG, MAXNUM;double rgamma(x)double x;{double w, y, z;int sign;if( x > 34.84425627277176174)	{	mtherr( name, UNDERFLOW );	return(1.0/MAXNUM);	}if( x < -34.034 )	{	w = -x;	z = sin( PI*w );	if( z == 0.0 )		return(0.0);	if( z < 0.0 )		{		sign = 1;		z = -z;		}	else		sign = -1;	y = log( w * z ) - log(PI) + lgam(w);	if( y < -MAXLOG )		{		mtherr( name, UNDERFLOW );		return( sign * 1.0 / MAXNUM );		}	if( y > MAXLOG )		{		mtherr( name, OVERFLOW );		return( sign * MAXNUM );		}	return( sign * exp(y));	}z = 1.0;w = x;while( w > 1.0 )	/* Downward recurrence */	{	w -= 1.0;	z *= w;	}while( w < 0.0 )	/* Upward recurrence */	{	z /= w;	w += 1.0;	}if( w == 0.0 )		/* Nonpositive integer */	return(0.0);if( w == 1.0 )		/* Other integer */	return( 1.0/z );y = w * ( 1.0 + chbevl( 4.0*w-2.0, R, 16 ) ) / z;return(y);}
 |