| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 | /*							simq.c * *	Solution of simultaneous linear equations AX = B *	by Gaussian elimination with partial pivoting * * * * SYNOPSIS: * * double A[n*n], B[n], X[n]; * int n, flag; * int IPS[]; * int simq(); * * ercode = simq( A, B, X, n, flag, IPS ); * * * * DESCRIPTION: * * B, X, IPS are vectors of length n. * A is an n x n matrix (i.e., a vector of length n*n), * stored row-wise: that is, A(i,j) = A[ij], * where ij = i*n + j, which is the transpose of the normal * column-wise storage. * * The contents of matrix A are destroyed. * * Set flag=0 to solve. * Set flag=-1 to do a new back substitution for different B vector * using the same A matrix previously reduced when flag=0. * * The routine returns nonzero on error; messages are printed. * * * ACCURACY: * * Depends on the conditioning (range of eigenvalues) of matrix A. * * * REFERENCE: * * Computer Solution of Linear Algebraic Systems, * by George E. Forsythe and Cleve B. Moler; Prentice-Hall, 1967. * *//*							simq	2 */#include <stdio.h>#define fabs(x) ((x) < 0 ? -(x) : (x))int simq( A, B, X, n, flag, IPS )double A[], B[], X[];int n, flag;int IPS[];{int i, j, ij, ip, ipj, ipk, ipn;int idxpiv, iback;int k, kp, kp1, kpk, kpn;int nip, nkp, nm1;double em, q, rownrm, big, size, pivot, sum;nm1 = n-1;if( flag < 0 )	goto solve;/*	Initialize IPS and X	*/ij=0;for( i=0; i<n; i++ )	{	IPS[i] = i;	rownrm = 0.0;	for( j=0; j<n; j++ )		{		q = fabs( A[ij] );		if( rownrm < q )			rownrm = q;		++ij;		}	if( rownrm == 0.0 )		{		printf("SIMQ ROWNRM=0");		return(1);		}	X[i] = 1.0/rownrm;	}/*							simq	3 *//*	Gaussian elimination with partial pivoting 	*/for( k=0; k<nm1; k++ )	{	big= 0.0;	idxpiv = 0;	for( i=k; i<n; i++ )		{		ip = IPS[i];		ipk = n*ip + k;		size = fabs( A[ipk] ) * X[ip];		if( size > big )			{			big = size;			idxpiv = i;			}		}	if( big == 0.0 )		{		printf( "SIMQ BIG=0" );		return(2);		}	if( idxpiv != k )		{		j = IPS[k];		IPS[k] = IPS[idxpiv];		IPS[idxpiv] = j;		}	kp = IPS[k];	kpk = n*kp + k;	pivot = A[kpk];	kp1 = k+1;	for( i=kp1; i<n; i++ )		{		ip = IPS[i];		ipk = n*ip + k;		em = -A[ipk]/pivot;		A[ipk] = -em;		nip = n*ip;		nkp = n*kp;		for( j=kp1; j<n; j++ )			{			ipj = nip + j;			A[ipj] = A[ipj] + em * A[nkp + j];			}		}	}kpn = n * IPS[n-1] + n - 1;	/* last element of IPS[n] th row */if( A[kpn] == 0.0 )	{	printf( "SIMQ A[kpn]=0");	return(3);	}/*							simq 4 *//*	back substitution	*/solve:ip = IPS[0];X[0] = B[ip];for( i=1; i<n; i++ )	{	ip = IPS[i];	ipj = n * ip;	sum = 0.0;	for( j=0; j<i; j++ )		{		sum += A[ipj] * X[j];		++ipj;		}	X[i] = B[ip] - sum;	}ipn = n * IPS[n-1] + n - 1;X[n-1] = X[n-1]/A[ipn];for( iback=1; iback<n; iback++ )	{/* i goes (n-1),...,1	*/	i = nm1 - iback;	ip = IPS[i];	nip = n*ip;	sum = 0.0;	for( j=i+1; j<n; j++ )		sum += A[nip+j] * X[j];	X[i] = (X[i] - sum)/A[nip+i];	}return(0);}
 |