| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 | /*							sin.c * *	Circular sine * * * * SYNOPSIS: * * double x, y, sin(); * * y = sin( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by *      x  +  x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as *      1  -  x**2 Q(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 10       150000       3.0e-17     7.8e-18 *    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 *  * ERROR MESSAGES: * *   message           condition        value returned * sin total loss   x > 1.073741824e9      0.0 * * Partial loss of accuracy begins to occur at x = 2**30 * = 1.074e9.  The loss is not gradual, but jumps suddenly to * about 1 part in 10e7.  Results may be meaningless for * x > 2**49 = 5.6e14.  The routine as implemented flags a * TLOSS error for x > 2**30 and returns 0.0. *//*							cos.c * *	Circular cosine * * * * SYNOPSIS: * * double x, y, cos(); * * y = cos( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by *      1  -  x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as *      x  +  x**3 P(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 *    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18 *//*							sin.c	*//*Cephes Math Library Release 2.8:  June, 2000Copyright 1985, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic double sincof[] = { 1.58962301576546568060E-10,-2.50507477628578072866E-8, 2.75573136213857245213E-6,-1.98412698295895385996E-4, 8.33333333332211858878E-3,-1.66666666666666307295E-1,};static double coscof[6] = {-1.13585365213876817300E-11, 2.08757008419747316778E-9,-2.75573141792967388112E-7, 2.48015872888517045348E-5,-1.38888888888730564116E-3, 4.16666666666665929218E-2,};static double DP1 =   7.85398125648498535156E-1;static double DP2 =   3.77489470793079817668E-8;static double DP3 =   2.69515142907905952645E-15;/* static double lossth = 1.073741824e9; */#endif#ifdef DECstatic unsigned short sincof[] = {0030056,0143750,0177214,0163153,0131727,0027455,0044510,0175352,0033470,0167432,0131752,0042414,0135120,0006400,0146776,0174027,0036410,0104210,0104207,0137202,0137452,0125252,0125252,0125103,};static unsigned short coscof[24] = {0127107,0151115,0002060,0152325,0031017,0072353,0155161,0174053,0132623,0171173,0172542,0057056,0034320,0006400,0147102,0023652,0135666,0005540,0133012,0076213,0037052,0125252,0125252,0125126,};/*  7.853981629014015197753906250000E-1 */static unsigned short P1[] = {0040111,0007732,0120000,0000000,};/*  4.960467869796758577649598009884E-10 */static unsigned short P2[] = {0030410,0055060,0100000,0000000,};/*  2.860594363054915898381331279295E-18 */static unsigned short P3[] = {0021523,0011431,0105056,0001560,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef IBMPCstatic unsigned short sincof[] = {0x9ccd,0x1fd1,0xd8fd,0x3de5,0x1f5d,0xa929,0xe5e5,0xbe5a,0x48a1,0x567d,0x1de3,0x3ec7,0xdf03,0x19bf,0x01a0,0xbf2a,0xf7d0,0x1110,0x1111,0x3f81,0x5548,0x5555,0x5555,0xbfc5,};static unsigned short coscof[24] = {0x1a9b,0xa086,0xfa49,0xbda8,0x3f05,0x7b4e,0xee9d,0x3e21,0x4bc6,0x7eac,0x7e4f,0xbe92,0x44f5,0x19c8,0x01a0,0x3efa,0x4f91,0x16c1,0xc16c,0xbf56,0x554b,0x5555,0x5555,0x3fa5,};/*  7.85398125648498535156E-1,  3.77489470793079817668E-8,  2.69515142907905952645E-15,*/static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef MIEEEstatic unsigned short sincof[] = {0x3de5,0xd8fd,0x1fd1,0x9ccd,0xbe5a,0xe5e5,0xa929,0x1f5d,0x3ec7,0x1de3,0x567d,0x48a1,0xbf2a,0x01a0,0x19bf,0xdf03,0x3f81,0x1111,0x1110,0xf7d0,0xbfc5,0x5555,0x5555,0x5548,};static unsigned short coscof[24] = {0xbda8,0xfa49,0xa086,0x1a9b,0x3e21,0xee9d,0x7b4e,0x3f05,0xbe92,0x7e4f,0x7eac,0x4bc6,0x3efa,0x01a0,0x19c8,0x44f5,0xbf56,0xc16c,0x16c1,0x4f91,0x3fa5,0x5555,0x5555,0x554b,};static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000};static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000};static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double p1evl ( double, void *, int );extern double floor ( double );extern double ldexp ( double, int );extern int isnan ( double );extern int isfinite ( double );#elsedouble polevl(), floor(), ldexp();int isnan(), isfinite();#endifextern double PIO4;static double lossth = 1.073741824e9;#ifdef NANSextern double NAN;#endif#ifdef INFINITIESextern double INFINITY;#endifdouble sin(x)double x;{double y, z, zz;int j, sign;#ifdef MINUSZEROif( x == 0.0 )	return(x);#endif#ifdef NANSif( isnan(x) )	return(x);if( !isfinite(x) )	{	mtherr( "sin", DOMAIN );	return(NAN);	}#endif/* make argument positive but save the sign */sign = 1;if( x < 0 )	{	x = -x;	sign = -1;	}if( x > lossth )	{	mtherr( "sin", TLOSS );	return(0.0);	}y = floor( x/PIO4 ); /* integer part of x/PIO4 *//* strip high bits of integer part to prevent integer overflow */z = ldexp( y, -4 );z = floor(z);           /* integer part of y/8 */z = y - ldexp( z, 4 );  /* y - 16 * (y/16) */j = z; /* convert to integer for tests on the phase angle *//* map zeros to origin */if( j & 1 )	{	j += 1;	y += 1.0;	}j = j & 07; /* octant modulo 360 degrees *//* reflect in x axis */if( j > 3)	{	sign = -sign;	j -= 4;	}/* Extended precision modular arithmetic */z = ((x - y * DP1) - y * DP2) - y * DP3;zz = z * z;if( (j==1) || (j==2) )	{	y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );	}else	{/*	y = z  +  z * (zz * polevl( zz, sincof, 5 ));*/	y = z  +  z * z * z * polevl( zz, sincof, 5 );	}if(sign < 0)	y = -y;return(y);}double cos(x)double x;{double y, z, zz;long i;int j, sign;#ifdef NANSif( isnan(x) )	return(x);if( !isfinite(x) )	{	mtherr( "cos", DOMAIN );	return(NAN);	}#endif/* make argument positive */sign = 1;if( x < 0 )	x = -x;if( x > lossth )	{	mtherr( "cos", TLOSS );	return(0.0);	}y = floor( x/PIO4 );z = ldexp( y, -4 );z = floor(z);		/* integer part of y/8 */z = y - ldexp( z, 4 );  /* y - 16 * (y/16) *//* integer and fractional part modulo one octant */i = z;if( i & 1 )	/* map zeros to origin */	{	i += 1;	y += 1.0;	}j = i & 07;if( j > 3)	{	j -=4;	sign = -sign;	}if( j > 1 )	sign = -sign;/* Extended precision modular arithmetic */z = ((x - y * DP1) - y * DP2) - y * DP3;zz = z * z;if( (j==1) || (j==2) )	{/*	y = z  +  z * (zz * polevl( zz, sincof, 5 ));*/	y = z  +  z * z * z * polevl( zz, sincof, 5 );	}else	{	y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );	}if(sign < 0)	y = -y;return(y);}/* Degrees, minutes, seconds to radians: *//* 1 arc second, in radians = 4.8481368110953599358991410e-5 */#ifdef DECstatic unsigned short P648[] = {034513,054170,0176773,0116043,};#define P64800 *(double *)P648#elsestatic double P64800 = 4.8481368110953599358991410e-5;#endifdouble radian(d,m,s)double d,m,s;{return( ((d*60.0 + m)*60.0 + s)*P64800 );}
 |