| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 | /*							tandg.c * *	Circular tangent of argument in degrees * * * * SYNOPSIS: * * double x, y, tandg(); * * y = tandg( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the argument x in degrees. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      0,10          8000      3.4e-17      1.2e-17 *    IEEE     0,10         30000      3.2e-16      8.4e-17 * * ERROR MESSAGES: * *   message         condition          value returned * tandg total loss   x > 8.0e14 (DEC)      0.0 *                    x > 1.0e14 (IEEE) * tandg singularity  x = 180 k  +  90     MAXNUM *//*							cotdg.c * *	Circular cotangent of argument in degrees * * * * SYNOPSIS: * * double x, y, cotdg(); * * y = cotdg( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the argument x in degrees. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * ERROR MESSAGES: * *   message         condition          value returned * cotdg total loss   x > 8.0e14 (DEC)      0.0 *                    x > 1.0e14 (IEEE) * cotdg singularity  x = 180 k            MAXNUM *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic double P[] = {-1.30936939181383777646E4, 1.15351664838587416140E6,-1.79565251976484877988E7};static double Q[] = {/* 1.00000000000000000000E0,*/ 1.36812963470692954678E4,-1.32089234440210967447E6, 2.50083801823357915839E7,-5.38695755929454629881E7};static double PI180 = 1.74532925199432957692E-2;static double lossth = 1.0e14;#endif#ifdef DECstatic unsigned short P[] = {0143514,0113306,0111171,0174674,0045214,0147545,0027744,0167346,0146210,0177526,0114514,0105660};static unsigned short Q[] = {/*0040200,0000000,0000000,0000000,*/0043525,0142457,0072633,0025617,0145241,0036742,0140525,0162256,0046276,0146176,0013526,0143573,0146515,0077401,0162762,0150607};static unsigned short P1[] = {0036616,0175065,0011224,0164711};#define PI180 *(double *)P1static double lossth = 8.0e14;#endif#ifdef IBMPCstatic unsigned short P[] = {0x3f38,0xd24f,0x92d8,0xc0c9,0x9ddd,0xa5fc,0x99ec,0x4131,0x9176,0xd329,0x1fea,0xc171};static unsigned short Q[] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x6572,0xeeb3,0xb8a5,0x40ca,0xbc96,0x582a,0x27bc,0xc134,0xd8ef,0xc2ea,0xd98f,0x4177,0x5a31,0x3cbe,0xafe0,0xc189};static unsigned short P1[] = {0x9d39,0xa252,0xdf46,0x3f91};#define PI180 *(double *)P1static double lossth = 1.0e14;#endif#ifdef MIEEEstatic unsigned short P[] = {0xc0c9,0x92d8,0xd24f,0x3f38,0x4131,0x99ec,0xa5fc,0x9ddd,0xc171,0x1fea,0xd329,0x9176};static unsigned short Q[] = {0x40ca,0xb8a5,0xeeb3,0x6572,0xc134,0x27bc,0x582a,0xbc96,0x4177,0xd98f,0xc2ea,0xd8ef,0xc189,0xafe0,0x3cbe,0x5a31};static unsigned short P1[] = {0x3f91,0xdf46,0xa252,0x9d39};#define PI180 *(double *)P1static double lossth = 1.0e14;#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double p1evl ( double, void *, int );extern double floor ( double );extern double ldexp ( double, int );static double tancot( double, int );#elsedouble polevl(), p1evl(), floor(), ldexp();static double tancot();#endifextern double MAXNUM;extern double PIO4;double tandg(x)double x;{return( tancot(x,0) );}double cotdg(x)double x;{return( tancot(x,1) );}static double tancot( xx, cotflg )double xx;int cotflg;{double x, y, z, zz;int j, sign;/* make argument positive but save the sign */if( xx < 0 )	{	x = -xx;	sign = -1;	}else	{	x = xx;	sign = 1;	}if( x > lossth )	{	mtherr( "tandg", TLOSS );	return(0.0);	}/* compute x mod PIO4 */y = floor( x/45.0 );/* strip high bits of integer part */z = ldexp( y, -3 );z = floor(z);		/* integer part of y/8 */z = y - ldexp( z, 3 );  /* y - 16 * (y/16) *//* integer and fractional part modulo one octant */j = z;/* map zeros and singularities to origin */if( j & 1 )	{	j += 1;	y += 1.0;	}z = x - y * 45.0;z *= PI180;zz = z * z;if( zz > 1.0e-14 )	y = z  +  z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4));else	y = z;	if( j & 2 )	{	if( cotflg )		y = -y;	else		{		if( y != 0.0 )			{			y = -1.0/y;			}		else			{			mtherr( "tandg", SING );			y = MAXNUM;			}		}	}else	{	if( cotflg )		{		if( y != 0.0 )			y = 1.0/y;		else			{			mtherr( "cotdg", SING );			y = MAXNUM;			}		}	}if( sign < 0 )	y = -y;return( y );}
 |