| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | /*							yn.c * *	Bessel function of second kind of integer order * * * * SYNOPSIS: * * double x, y, yn(); * int n; * * y = yn( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The function is evaluated by forward recurrence on * n, starting with values computed by the routines * y0() and y1(). * * If n = 0 or 1 the routine for y0 or y1 is called * directly. * * * * ACCURACY: * * *                      Absolute error, except relative *                      when y > 1: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        2200       2.9e-16     5.3e-17 *    IEEE      0, 30       30000       3.4e-15     4.3e-16 * * * ERROR MESSAGES: * *   message         condition      value returned * yn singularity   x = 0              MAXNUM * yn overflow                         MAXNUM * * Spot checked against tables for x, n between 0 and 100. * *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double y0 ( double );extern double y1 ( double );extern double log ( double );#elsedouble y0(), y1(), log();#endifextern double MAXNUM, MAXLOG;double yn( n, x )int n;double x;{double an, anm1, anm2, r;int k, sign;if( n < 0 )	{	n = -n;	if( (n & 1) == 0 )	/* -1**n */		sign = 1;	else		sign = -1;	}else	sign = 1;if( n == 0 )	return( sign * y0(x) );if( n == 1 )	return( sign * y1(x) );/* test for overflow */if( x <= 0.0 )	{	mtherr( "yn", SING );	return( -MAXNUM );	}/* forward recurrence on n */anm2 = y0(x);anm1 = y1(x);k = 1;r = 2 * k;do	{	an = r * anm1 / x  -  anm2;	anm2 = anm1;	anm1 = an;	r += 2.0;	++k;	}while( k < n );return( sign * an );}
 |