| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 | /*							atanhl.c * *	Inverse hyperbolic tangent, long double precision * * * * SYNOPSIS: * * long double x, y, atanhl(); * * y = atanhl( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic tangent of argument in the range * MINLOGL to MAXLOGL. * * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is * employed.  Otherwise, *        atanh(x) = 0.5 * log( (1+x)/(1-x) ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -1,1        30000       1.1e-19     3.3e-20 * *//*Cephes Math Library Release 2.7:  May, 1998Copyright (C) 1987, 1991, 1998 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic long double P[] = { 2.9647757819596835680719E-3L,-8.0026596513099094380633E-1L, 7.7920941408493040219831E0L,-2.4330686602187898836837E1L, 3.0204265014595622991082E1L,-1.2961142942114056581210E1L,};static long double Q[] = {/* 1.0000000000000000000000E0L,*/-1.3729634163247557081869E1L, 6.2320841104088512332185E1L,-1.2469344457045341444078E2L, 1.1394285233959210574352E2L,-3.8883428826342169425890E1L,};#endif#ifdef IBMPCstatic short P[] = {0x3aa2,0x036b,0xaf06,0xc24c,0x3ff6, XPD0x528e,0x56e8,0x3af4,0xccde,0xbffe, XPD0x9d89,0xc9a1,0xd5cf,0xf958,0x4001, XPD0xa653,0x6cfa,0x3f04,0xc2a5,0xc003, XPD0xc651,0x2b3d,0x55b2,0xf1a2,0x4003, XPD0xd76d,0xf293,0xd76b,0xcf60,0xc002, XPD};static short Q[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0xd1b9,0x5314,0x94df,0xdbac,0xc002, XPD0x3caa,0x0517,0x8a92,0xf948,0x4004, XPD0x535e,0xaf5f,0x0b2a,0xf963,0xc005, XPD0xa6f9,0xb702,0xbd8a,0xe3e2,0x4005, XPD0xe136,0xf5ee,0xa190,0x9b88,0xc004, XPD};#endif#ifdef MIEEEstatic long P[] = {0x3ff60000,0xc24caf06,0x036b3aa2,0xbffe0000,0xccde3af4,0x56e8528e,0x40010000,0xf958d5cf,0xc9a19d89,0xc0030000,0xc2a53f04,0x6cfaa653,0x40030000,0xf1a255b2,0x2b3dc651,0xc0020000,0xcf60d76b,0xf293d76d,};static long Q[] = {/*0x3fff0000,0x80000000,0x00000000,*/0xc0020000,0xdbac94df,0x5314d1b9,0x40040000,0xf9488a92,0x05173caa,0xc0050000,0xf9630b2a,0xaf5f535e,0x40050000,0xe3e2bd8a,0xb702a6f9,0xc0040000,0x9b88a190,0xf5eee136,};#endifextern long double MAXNUML;#ifdef ANSIPROTextern long double fabsl ( long double );extern long double logl ( long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );#elselong double fabsl(), logl(), polevll(), p1evll();#endif#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef NANSextern long double NANL;#endiflong double atanhl(x)long double x;{long double s, z;#ifdef MINUSZEROif( x == 0.0L )	return(x);#endifz = fabsl(x);if( z >= 1.0L )	{	if( x == 1.0L )		{#ifdef INFINITIES		return( INFINITYL );#else		return( MAXNUML );#endif		}	if( x == -1.0L )		{#ifdef INFINITIES		return( -INFINITYL );#else		return( -MAXNUML );#endif		}	mtherr( "atanhl", DOMAIN );#ifdef NANS	return( NANL );#else	return( MAXNUML );#endif	}if( z < 1.0e-8L )	return(x);if( z < 0.5L )	{	z = x * x;	s = x   +  x * z * (polevll(z, P, 5) / p1evll(z, Q, 5));	return(s);	}return( 0.5L * logl((1.0L+x)/(1.0L-x)) );}
 |