| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 | /*							ellikl.c * *	Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * long double phi, m, y, ellikl(); * * y = ellikl( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * *                phi *                 - *                | | *                |           dt * F(phi_\m)  =    |    ------------------ *                |                   2 *              | |    sqrt( 1 - m sin t ) *               - *                0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -10,10        30000      3.6e-18     4.1e-19 * * *//*Cephes Math Library Release 2.3:  November, 1995Copyright 1984, 1987, 1995 by Stephen L. Moshier*//*	Incomplete elliptic integral of first kind	*/#include <math.h>#ifdef ANSIPROTextern long double sqrtl ( long double );extern long double fabsl ( long double );extern long double logl ( long double );extern long double tanl ( long double );extern long double atanl ( long double );extern long double floorl ( long double );extern long double ellpkl ( long double );long double ellikl ( long double, long double );#elselong double sqrtl(), fabsl(), logl(), tanl(), atanl(), floorl(), ellpkl();long double ellikl();#endifextern long double PIL, PIO2L, MACHEPL, MAXNUML;long double ellikl( phi, m )long double phi, m;{long double a, b, c, e, temp, t, K;int d, mod, sign, npio2;if( m == 0.0L )	return( phi );a = 1.0L - m;if( a == 0.0L )	{	if( fabsl(phi) >= PIO2L )		{		mtherr( "ellikl", SING );		return( MAXNUML );		}	return(  logl(  tanl( 0.5L*(PIO2L + phi) )  )   );	}npio2 = floorl( phi/PIO2L );if( npio2 & 1 )	npio2 += 1;if( npio2 )	{	K = ellpkl( a );	phi = phi - npio2 * PIO2L;	}else	K = 0.0L;if( phi < 0.0L )	{	phi = -phi;	sign = -1;	}else	sign = 0;b = sqrtl(a);t = tanl( phi );if( fabsl(t) > 10.0L )	{	/* Transform the amplitude */	e = 1.0L/(b*t);	/* ... but avoid multiple recursions.  */	if( fabsl(e) < 10.0L )		{		e = atanl(e);		if( npio2 == 0 )			K = ellpkl( a );		temp = K - ellikl( e, m );		goto done;		}	}a = 1.0L;c = sqrtl(m);d = 1;mod = 0;while( fabsl(c/a) > MACHEPL )	{	temp = b/a;	phi = phi + atanl(t*temp) + mod * PIL;	mod = (phi + PIO2L)/PIL;	t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );	c = 0.5L * ( a - b );	temp = sqrtl( a * b );	a = 0.5L * ( a + b );	b = temp;	d += d;	}temp = (atanl(t) + mod * PIL)/(d * a);done:if( sign < 0 )	temp = -temp;temp += npio2 * K;return( temp );}
 |