| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 | /*							ellpjl.c * *	Jacobian Elliptic Functions * * * * SYNOPSIS: * * long double u, m, sn, cn, dn, phi; * int ellpjl(); * * ellpjl( u, m, _&sn, _&cn, _&dn, _&phi ); * * * * DESCRIPTION: * * * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), * and dn(u|m) of parameter m between 0 and 1, and real * argument u. * * These functions are periodic, with quarter-period on the * real axis equal to the complete elliptic integral * ellpk(1.0-m). * * Relation to incomplete elliptic integral: * If u = ellik(phi,m), then sn(u|m) = sin(phi), * and cn(u|m) = cos(phi).  Phi is called the amplitude of u. * * Computation is by means of the arithmetic-geometric mean * algorithm, except when m is within 1e-12 of 0 or 1.  In the * latter case with m close to 1, the approximation applies * only for phi < pi/2. * * ACCURACY: * * Tested at random points with u between 0 and 10, m between * 0 and 1. * *            Absolute error (* = relative error): * arithmetic   function   # trials      peak         rms *    IEEE      sn          10000       1.7e-18     2.3e-19 *    IEEE      cn          20000       1.6e-18     2.2e-19 *    IEEE      dn          10000       4.7e-15     2.7e-17 *    IEEE      phi         10000       4.0e-19*    6.6e-20* * * Accuracy deteriorates when u is large. * *//*Cephes Math Library Release 2.3:  November, 1995Copyright 1984, 1987, 1995 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern long double sqrtl ( long double );extern long double fabsl ( long double );extern long double sinl ( long double );extern long double cosl ( long double );extern long double asinl ( long double );extern long double tanhl ( long double );extern long double sinhl ( long double );extern long double coshl ( long double );extern long double atanl ( long double );extern long double expl ( long double );#elselong double sqrtl(), fabsl(), sinl(), cosl(), asinl(), tanhl();long double sinhl(), coshl(), atanl(), expl();#endifextern long double PIO2L, MACHEPL;int ellpjl( u, m, sn, cn, dn, ph )long double u, m;long double *sn, *cn, *dn, *ph;{long double ai, b, phi, t, twon;long double a[9], c[9];int i;/* Check for special cases */if( m < 0.0L || m > 1.0L )	{	mtherr( "ellpjl", DOMAIN );	*sn = 0.0L;	*cn = 0.0L;	*ph = 0.0L;	*dn = 0.0L;	return(-1);	}if( m < 1.0e-12L )	{	t = sinl(u);	b = cosl(u);	ai = 0.25L * m * (u - t*b);	*sn = t - ai*b;	*cn = b + ai*t;	*ph = u - ai;	*dn = 1.0L - 0.5L*m*t*t;	return(0);	}if( m >= 0.999999999999L )	{	ai = 0.25L * (1.0L-m);	b = coshl(u);	t = tanhl(u);	phi = 1.0L/b;	twon = b * sinhl(u);	*sn = t + ai * (twon - u)/(b*b);	*ph = 2.0L*atanl(expl(u)) - PIO2L + ai*(twon - u)/b;	ai *= t * phi;	*cn = phi - ai * (twon - u);	*dn = phi + ai * (twon + u);	return(0);	}/*	A. G. M. scale		*/a[0] = 1.0L;b = sqrtl(1.0L - m);c[0] = sqrtl(m);twon = 1.0L;i = 0;while( fabsl(c[i]/a[i]) > MACHEPL )	{	if( i > 7 )		{		mtherr( "ellpjl", OVERFLOW );		goto done;		}	ai = a[i];	++i;	c[i] = 0.5L * ( ai - b );	t = sqrtl( ai * b );	a[i] = 0.5L * ( ai + b );	b = t;	twon *= 2.0L;	}done:/* backward recurrence */phi = twon * a[i] * u;do	{	t = c[i] * sinl(phi) / a[i];	b = phi;	phi = 0.5L * (asinl(t) + phi);	}while( --i );*sn = sinl(phi);t = cosl(phi);*cn = t;*dn = t/cosl(phi-b);*ph = phi;return(0);}
 |