| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 | /*							exp2l.c * *	Base 2 exponential function, long double precision * * * * SYNOPSIS: * * long double x, y, exp2l(); * * y = exp2l( x ); * * * * DESCRIPTION: * * Returns 2 raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that *     x    k  f *    2  = 2  2. * * A Pade' form * *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) ) * * approximates 2**x in the basic range [-0.5, 0.5]. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      +-16300     300000      9.1e-20     2.6e-20 * * * See exp.c for comments on error amplification. * * * ERROR MESSAGES: * *   message         condition      value returned * exp2l underflow   x < -16382        0.0 * exp2l overflow    x >= 16384       MAXNUM * *//*Cephes Math Library Release 2.7:  May, 1998Copyright 1984, 1991, 1998 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic long double P[] = { 6.0614853552242266094567E1L, 3.0286971917562792508623E4L, 2.0803843631901852422887E6L,};static long double Q[] = {/* 1.0000000000000000000000E0,*/ 1.7492876999891839021063E3L, 3.2772515434906797273099E5L, 6.0027204078348487957118E6L,};#endif#ifdef IBMPCstatic short P[] = {0xffd8,0x6ad6,0x9c2b,0xf275,0x4004, XPD0x3426,0x2dc5,0xf19f,0xec9d,0x400d, XPD0x7ec0,0xd041,0x02e7,0xfdf4,0x4013, XPD};static short Q[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0x575b,0x9b93,0x34d6,0xdaa9,0x4009, XPD0xe38d,0x6d74,0xa4f0,0xa005,0x4011, XPD0xb37e,0xcfba,0x40d0,0xb730,0x4015, XPD};#endif#ifdef MIEEEstatic long P[] = {0x40040000,0xf2759c2b,0x6ad6ffd8,0x400d0000,0xec9df19f,0x2dc53426,0x40130000,0xfdf402e7,0xd0417ec0,};static long Q[] = {/*0x3fff0000,0x80000000,0x00000000,*/0x40090000,0xdaa934d6,0x9b93575b,0x40110000,0xa005a4f0,0x6d74e38d,0x40150000,0xb73040d0,0xcfbab37e,};#endif#define MAXL2L 16384.0L#define MINL2L -16382.0Lextern long double MAXNUML;#ifdef ANSIPROTextern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern long double floorl ( long double );extern long double ldexpl ( long double, int );extern int isnanl ( long double );#elselong double polevll(), p1evll(), floorl(), ldexpl(), isnanl();#endif#ifdef INFINITIESextern long double INFINITYL;#endiflong double exp2l(x)long double x;{long double px, xx;int n;#ifdef NANSif( isnanl(x) )	return(x);#endifif( x > MAXL2L)	{#ifdef INFINITIES	return( INFINITYL );#else	mtherr( "exp2l", OVERFLOW );	return( MAXNUML );#endif	}if( x < MINL2L )	{#ifndef INFINITIES	mtherr( "exp2l", UNDERFLOW );#endif	return(0.0L);	}xx = x;	/* save x *//* separate into integer and fractional parts */px = floorl(x+0.5L);n = px;x = x - px;/* rational approximation * exp2(x) = 1.0 +  2xP(xx)/(Q(xx) - P(xx)) * where xx = x**2 */xx = x * x;px = x * polevll( xx, P, 2 );x =  px / ( p1evll( xx, Q, 3 ) - px );x = 1.0L + ldexpl( x, 1 );/* scale by power of 2 */x = ldexpl( x, n );return(x);}
 |