| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764 | /*							gammal.c * *	Gamma function * * * * SYNOPSIS: * * long double x, y, gammal(); * extern int sgngam; * * y = gammal( x ); * * * * DESCRIPTION: * * Returns gamma function of the argument.  The result is * correctly signed, and the sign (+1 or -1) is also * returned in a global (extern) variable named sgngam. * This variable is also filled in by the logarithmic gamma * function lgam(). * * Arguments |x| <= 13 are reduced by recurrence and the function * approximated by a rational function of degree 7/8 in the * interval (2,3).  Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula.   * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -40,+40      10000       3.6e-19     7.9e-20 *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19 * * Accuracy for large arguments is dominated by error in powl(). * *//*							lgaml() * *	Natural logarithm of gamma function * * * * SYNOPSIS: * * long double x, y, lgaml(); * extern int sgngam; * * y = lgaml( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * The sign (+1 or -1) of the gamma function is returned in a * global (extern) variable named sgngam. * * For arguments greater than 33, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula using a polynomial approximation of * degree 4. Arguments between -33 and +33 are reduced by * recurrence to the interval [2,3] of a rational approximation. * The cosecant reflection formula is employed for arguments * less than -33. * * Arguments greater than MAXLGML (10^4928) return MAXNUML. * * * * ACCURACY: * * * arithmetic      domain        # trials     peak         rms *    IEEE         -40, 40        100000     2.2e-19     4.6e-20 *    IEEE    10^-2000,10^+2000    20000     1.6e-19     3.3e-20 * The error criterion was relative when the function magnitude * was greater than one but absolute when it was less than one. * *//*							gamma.c	*//*	gamma function	*//*Copyright 1994 by Stephen L. Moshier*/#include <math.h>/*gamma(x+2)  = gamma(x+2) P(x)/Q(x)0 <= x <= 1Relative errorn=7, d=8Peak error =  1.83e-20Relative error spread =  8.4e-23*/#if UNKstatic long double P[8] = { 4.212760487471622013093E-5L, 4.542931960608009155600E-4L, 4.092666828394035500949E-3L, 2.385363243461108252554E-2L, 1.113062816019361559013E-1L, 3.629515436640239168939E-1L, 8.378004301573126728826E-1L, 1.000000000000000000009E0L,};static long double Q[9] = {-1.397148517476170440917E-5L, 2.346584059160635244282E-4L,-1.237799246653152231188E-3L,-7.955933682494738320586E-4L, 2.773706565840072979165E-2L,-4.633887671244534213831E-2L,-2.243510905670329164562E-1L, 4.150160950588455434583E-1L, 9.999999999999999999908E-1L,};#endif#if IBMPCstatic short P[] = {0x434a,0x3f22,0x2bda,0xb0b2,0x3ff0, XPD0xf5aa,0xe82f,0x335b,0xee2e,0x3ff3, XPD0xbe6c,0x3757,0xc717,0x861b,0x3ff7, XPD0x7f43,0x5196,0xb166,0xc368,0x3ff9, XPD0x9549,0x8eb5,0x8c3a,0xe3f4,0x3ffb, XPD0x8d75,0x23af,0xc8e4,0xb9d4,0x3ffd, XPD0x29cf,0x19b3,0x16c8,0xd67a,0x3ffe, XPD0x0000,0x0000,0x0000,0x8000,0x3fff, XPD};static short Q[] = {0x5473,0x2de8,0x1268,0xea67,0xbfee, XPD0x334b,0xc2f0,0xa2dd,0xf60e,0x3ff2, XPD0xbeed,0x1853,0xa691,0xa23d,0xbff5, XPD0x296e,0x7cb1,0x5dfd,0xd08f,0xbff4, XPD0x0417,0x7989,0xd7bc,0xe338,0x3ff9, XPD0x3295,0x3698,0xd580,0xbdcd,0xbffa, XPD0x75ef,0x3ab7,0x4ad3,0xe5bc,0xbffc, XPD0xe458,0x2ec7,0xfd57,0xd47c,0x3ffd, XPD0x0000,0x0000,0x0000,0x8000,0x3fff, XPD};#endif#if MIEEEstatic long P[24] = {0x3ff00000,0xb0b22bda,0x3f22434a,0x3ff30000,0xee2e335b,0xe82ff5aa,0x3ff70000,0x861bc717,0x3757be6c,0x3ff90000,0xc368b166,0x51967f43,0x3ffb0000,0xe3f48c3a,0x8eb59549,0x3ffd0000,0xb9d4c8e4,0x23af8d75,0x3ffe0000,0xd67a16c8,0x19b329cf,0x3fff0000,0x80000000,0x00000000,};static long Q[27] = {0xbfee0000,0xea671268,0x2de85473,0x3ff20000,0xf60ea2dd,0xc2f0334b,0xbff50000,0xa23da691,0x1853beed,0xbff40000,0xd08f5dfd,0x7cb1296e,0x3ff90000,0xe338d7bc,0x79890417,0xbffa0000,0xbdcdd580,0x36983295,0xbffc0000,0xe5bc4ad3,0x3ab775ef,0x3ffd0000,0xd47cfd57,0x2ec7e458,0x3fff0000,0x80000000,0x00000000,};#endif/*static long double P[] = {-3.01525602666895735709e0L,-3.25157411956062339893e1L,-2.92929976820724030353e2L,-1.70730828800510297666e3L,-7.96667499622741999770e3L,-2.59780216007146401957e4L,-5.99650230220855581642e4L,-7.15743521530849602425e4L};static long double Q[] = { 1.00000000000000000000e0L,-1.67955233807178858919e1L, 8.85946791747759881659e1L, 5.69440799097468430177e1L,-1.98526250512761318471e3L, 3.31667508019495079814e3L, 1.60577839621734713377e4L,-2.97045081369399940529e4L,-7.15743521530849602412e4L};*/#define MAXGAML 1755.455L/*static long double LOGPI = 1.14472988584940017414L;*//* Stirling's formula for the gamma functiongamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))z(x) = x13 <= x <= 1024Relative errorn=8, d=0Peak error =  9.44e-21Relative error spread =  8.8e-4*/#if UNKstatic long double STIR[9] = { 7.147391378143610789273E-4L,-2.363848809501759061727E-5L,-5.950237554056330156018E-4L, 6.989332260623193171870E-5L, 7.840334842744753003862E-4L,-2.294719747873185405699E-4L,-2.681327161876304418288E-3L, 3.472222222230075327854E-3L, 8.333333333333331800504E-2L,};#endif#if IBMPCstatic short STIR[] = {0x6ede,0x69f7,0x54e3,0xbb5d,0x3ff4, XPD0xc395,0x0295,0x4443,0xc64b,0xbfef, XPD0xba6f,0x7c59,0x5e47,0x9bfb,0xbff4, XPD0x5704,0x1a39,0xb11d,0x9293,0x3ff1, XPD0x30b7,0x1a21,0x98b2,0xcd87,0x3ff4, XPD0xbef3,0x7023,0x6a08,0xf09e,0xbff2, XPD0x3a1c,0x5ac8,0x3478,0xafb9,0xbff6, XPD0xc3c9,0x906e,0x38e3,0xe38e,0x3ff6, XPD0xa1d5,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD};#endif#if MIEEEstatic long STIR[27] = {0x3ff40000,0xbb5d54e3,0x69f76ede,0xbfef0000,0xc64b4443,0x0295c395,0xbff40000,0x9bfb5e47,0x7c59ba6f,0x3ff10000,0x9293b11d,0x1a395704,0x3ff40000,0xcd8798b2,0x1a2130b7,0xbff20000,0xf09e6a08,0x7023bef3,0xbff60000,0xafb93478,0x5ac83a1c,0x3ff60000,0xe38e38e3,0x906ec3c9,0x3ffb0000,0xaaaaaaaa,0xaaaaa1d5,};#endif#define MAXSTIR 1024.0Lstatic long double SQTPI = 2.50662827463100050242E0L;/* 1/gamma(x) = z P(z) * z(x) = 1/x * 0 < x < 0.03125 * Peak relative error 4.2e-23 */#if UNKstatic long double S[9] = {-1.193945051381510095614E-3L, 7.220599478036909672331E-3L,-9.622023360406271645744E-3L,-4.219773360705915470089E-2L, 1.665386113720805206758E-1L,-4.200263503403344054473E-2L,-6.558780715202540684668E-1L, 5.772156649015328608253E-1L, 1.000000000000000000000E0L,};#endif#if IBMPCstatic short S[] = {0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, XPD0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, XPD0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, XPD0x10b0,0xec17,0x87dc,0xacd7,0xbffa, XPD0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, XPD0xf183,0x126b,0xf47d,0xac0a,0xbffa, XPD0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, XPD0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, XPD0x0000,0x0000,0x0000,0x8000,0x3fff, XPD};#endif#if MIEEEstatic long S[27] = {0xbff50000,0x9c7e25e5,0xd6d3baeb,0x3ff70000,0xec9ac74e,0xceb4fe9a,0xbff80000,0x9da5b0e9,0xdfef9225,0xbffa0000,0xacd787dc,0xec1710b0,0x3ffc0000,0xaa891905,0x75156b8d,0xbffa0000,0xac0af47d,0x126bf183,0xbffe0000,0xa7e7a013,0x57d17bf6,0x3ffe0000,0x93c467e3,0x7db0c7a9,0x3fff0000,0x80000000,0x00000000,};#endif/* 1/gamma(-x) = z P(z) * z(x) = 1/x * 0 < x < 0.03125 * Peak relative error 5.16e-23 * Relative error spread =  2.5e-24 */#if UNKstatic long double SN[9] = { 1.133374167243894382010E-3L, 7.220837261893170325704E-3L, 9.621911155035976733706E-3L,-4.219773343731191721664E-2L,-1.665386113944413519335E-1L,-4.200263503402112910504E-2L, 6.558780715202536547116E-1L, 5.772156649015328608727E-1L,-1.000000000000000000000E0L,};#endif#if IBMPCstatic short SN[] = {0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, XPD0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, XPD0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, XPD0x783f,0x41dd,0x87d1,0xacd7,0xbffa, XPD0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, XPD0x7f64,0x1234,0xf47d,0xac0a,0xbffa, XPD0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, XPD0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, XPD0x0000,0x0000,0x0000,0x8000,0xbfff, XPD};#endif#if MIEEEstatic long SN[27] = {0x3ff50000,0x948db9f7,0x02de5dd1,0x3ff70000,0xec9cc5f1,0xdd68989b,0x3ff80000,0x9da5386f,0x18f02ca1,0xbffa0000,0xacd787d1,0x41dd783f,0xbffc0000,0xaa891905,0xd76d7a5b,0xbffa0000,0xac0af47d,0x12347f64,0x3ffe0000,0xa7e7a013,0x57d15e26,0x3ffe0000,0x93c467e3,0x7db0c7aa,0xbfff0000,0x80000000,0x00000000,};#endifint sgngaml = 0;extern int sgngaml;extern long double MAXLOGL, MAXNUML, PIL;/* #define PIL 3.14159265358979323846L *//* #define MAXNUML 1.189731495357231765021263853E4932L */#ifdef ANSIPROTextern long double fabsl ( long double );extern long double lgaml ( long double );extern long double logl ( long double );extern long double expl ( long double );extern long double gammal ( long double );extern long double sinl ( long double );extern long double floorl ( long double );extern long double powl ( long double, long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern int isnanl ( long double );extern int isfinitel ( long double );static long double stirf ( long double );#elselong double fabsl(), lgaml(), logl(), expl(), gammal(), sinl();long double floorl(), powl(), polevll(), p1evll(), isnanl(), isfinitel();static long double stirf();#endif#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef NANSextern long double NANL;#endif/* Gamma function computed by Stirling's formula. */static long double stirf(x)long double x;{long double y, w, v;w = 1.0L/x;/* For large x, use rational coefficients from the analytical expansion.  */if( x > 1024.0L )	w = (((((6.97281375836585777429E-5L * w		+ 7.84039221720066627474E-4L) * w		- 2.29472093621399176955E-4L) * w		- 2.68132716049382716049E-3L) * w		+ 3.47222222222222222222E-3L) * w		+ 8.33333333333333333333E-2L) * w		+ 1.0L;else	w = 1.0L + w * polevll( w, STIR, 8 );y = expl(x);if( x > MAXSTIR )	{ /* Avoid overflow in pow() */	v = powl( x, 0.5L * x - 0.25L );	y = v * (v / y);	}else	{	y = powl( x, x - 0.5L ) / y;	}y = SQTPI * y * w;return( y );}long double gammal(x)long double x;{long double p, q, z;int i;sgngaml = 1;#ifdef NANSif( isnanl(x) )	return(NANL);#endif#ifdef INFINITIESif(x == INFINITYL)	return(INFINITYL);#ifdef NANSif(x == -INFINITYL)	goto gamnan;#endif#endifq = fabsl(x);if( q > 13.0L )	{	if( q > MAXGAML )		goto goverf;	if( x < 0.0L )		{		p = floorl(q);		if( p == q )			{gamnan:#ifdef NANS			mtherr( "gammal", DOMAIN );			return (NANL);#else			goto goverf;#endif			}		i = p;		if( (i & 1) == 0 )			sgngaml = -1;		z = q - p;		if( z > 0.5L )			{			p += 1.0L;			z = q - p;			}		z = q * sinl( PIL * z );		z = fabsl(z) * stirf(q);		if( z <= PIL/MAXNUML )			{goverf:#ifdef INFINITIES			return( sgngaml * INFINITYL);#else			mtherr( "gammal", OVERFLOW );			return( sgngaml * MAXNUML);#endif			}		z = PIL/z;		}	else		{		z = stirf(x);		}	return( sgngaml * z );	}z = 1.0L;while( x >= 3.0L )	{	x -= 1.0L;	z *= x;	}while( x < -0.03125L )	{	z /= x;	x += 1.0L;	}if( x <= 0.03125L )	goto small;while( x < 2.0L )	{	z /= x;	x += 1.0L;	}if( x == 2.0L )	return(z);x -= 2.0L;p = polevll( x, P, 7 );q = polevll( x, Q, 8 );return( z * p / q );small:if( x == 0.0L )	{	  goto gamnan;	}else	{	if( x < 0.0L )		{		x = -x;		q = z / (x * polevll( x, SN, 8 ));		}	else		q = z / (x * polevll( x, S, 8 ));	}return q;}/* A[]: Stirling's formula expansion of log gamma * B[], C[]: log gamma function between 2 and 3 *//* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x A(1/x^2) * x >= 8 * Peak relative error 1.51e-21 * Relative spread of error peaks 5.67e-21 */#if UNKstatic long double A[7] = { 4.885026142432270781165E-3L,-1.880801938119376907179E-3L, 8.412723297322498080632E-4L,-5.952345851765688514613E-4L, 7.936507795855070755671E-4L,-2.777777777750349603440E-3L, 8.333333333333331447505E-2L,};#endif#if IBMPCstatic short A[] = {0xd984,0xcc08,0x91c2,0xa012,0x3ff7, XPD0x3d91,0x0304,0x3da1,0xf685,0xbff5, XPD0x3bdc,0xaad1,0xd492,0xdc88,0x3ff4, XPD0x8b20,0x9fce,0x844e,0x9c09,0xbff4, XPD0xf8f2,0x30e5,0x0092,0xd00d,0x3ff4, XPD0x4d88,0x03a8,0x60b6,0xb60b,0xbff6, XPD0x9fcc,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD};#endif#if MIEEEstatic long A[21] = {0x3ff70000,0xa01291c2,0xcc08d984,0xbff50000,0xf6853da1,0x03043d91,0x3ff40000,0xdc88d492,0xaad13bdc,0xbff40000,0x9c09844e,0x9fce8b20,0x3ff40000,0xd00d0092,0x30e5f8f2,0xbff60000,0xb60b60b6,0x03a84d88,0x3ffb0000,0xaaaaaaaa,0xaaaa9fcc,};#endif/* log gamma(x+2) = x B(x)/C(x) * 0 <= x <= 1 * Peak relative error 7.16e-22 * Relative spread of error peaks 4.78e-20 */#if UNKstatic long double B[7] = {-2.163690827643812857640E3L,-8.723871522843511459790E4L,-1.104326814691464261197E6L,-6.111225012005214299996E6L,-1.625568062543700591014E7L,-2.003937418103815175475E7L,-8.875666783650703802159E6L,};static long double C[7] = {/* 1.000000000000000000000E0L,*/-5.139481484435370143617E2L,-3.403570840534304670537E4L,-6.227441164066219501697E5L,-4.814940379411882186630E6L,-1.785433287045078156959E7L,-3.138646407656182662088E7L,-2.099336717757895876142E7L,};#endif#if IBMPCstatic short B[] = {0x9557,0x4995,0x0da1,0x873b,0xc00a, XPD0xfe44,0x9af8,0x5b8c,0xaa63,0xc00f, XPD0x5aa8,0x7cf5,0x3684,0x86ce,0xc013, XPD0x259a,0x258c,0xf206,0xba7f,0xc015, XPD0xbe18,0x1ca3,0xc0a0,0xf80a,0xc016, XPD0x168f,0x2c42,0x6717,0x98e3,0xc017, XPD0x2051,0x9d55,0x92c8,0x876e,0xc016, XPD};static short C[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0xaa77,0xcf2f,0xae76,0x807c,0xc008, XPD0xb280,0x0d74,0xb55a,0x84f3,0xc00e, XPD0xa505,0xcd30,0x81dc,0x9809,0xc012, XPD0x3369,0x4246,0xb8c2,0x92f0,0xc015, XPD0x63cf,0x6aee,0xbe6f,0x8837,0xc017, XPD0x26bb,0xccc7,0xb009,0xef75,0xc017, XPD0x462b,0xbae8,0xab96,0xa02a,0xc017, XPD};#endif#if MIEEEstatic long B[21] = {0xc00a0000,0x873b0da1,0x49959557,0xc00f0000,0xaa635b8c,0x9af8fe44,0xc0130000,0x86ce3684,0x7cf55aa8,0xc0150000,0xba7ff206,0x258c259a,0xc0160000,0xf80ac0a0,0x1ca3be18,0xc0170000,0x98e36717,0x2c42168f,0xc0160000,0x876e92c8,0x9d552051,};static long C[21] = {/*0x3fff0000,0x80000000,0x00000000,*/0xc0080000,0x807cae76,0xcf2faa77,0xc00e0000,0x84f3b55a,0x0d74b280,0xc0120000,0x980981dc,0xcd30a505,0xc0150000,0x92f0b8c2,0x42463369,0xc0170000,0x8837be6f,0x6aee63cf,0xc0170000,0xef75b009,0xccc726bb,0xc0170000,0xa02aab96,0xbae8462b,};#endif/* log( sqrt( 2*pi ) ) */static long double LS2PI  =  0.91893853320467274178L;#define MAXLGM 1.04848146839019521116e+4928L/* Logarithm of gamma function */long double lgaml(x)long double x;{long double p, q, w, z, f, nx;int i;sgngaml = 1;#ifdef NANSif( isnanl(x) )	return(NANL);#endif#ifdef INFINITIESif( !isfinitel(x) )	return(INFINITYL);#endifif( x < -34.0L )	{	q = -x;	w = lgaml(q); /* note this modifies sgngam! */	p = floorl(q);	if( p == q )		{#ifdef INFINITIES		mtherr( "lgaml", SING );		return (INFINITYL);#else		goto loverf;#endif		}	i = p;	if( (i & 1) == 0 )		sgngaml = -1;	else		sgngaml = 1;	z = q - p;	if( z > 0.5L )		{		p += 1.0L;		z = p - q;		}	z = q * sinl( PIL * z );	if( z == 0.0L )		goto loverf;/*	z = LOGPI - logl( z ) - w; */	z = logl( PIL/z ) - w;	return( z );	}if( x < 13.0L )	{	z = 1.0L;	nx = floorl( x +  0.5L );	f = x - nx;	while( x >= 3.0L )		{		nx -= 1.0L;		x = nx + f;		z *= x;		}	while( x < 2.0L )		{		if( fabsl(x) <= 0.03125 )			goto lsmall;		z /= nx +  f;		nx += 1.0L;		x = nx + f;		}	if( z < 0.0L )		{		sgngaml = -1;		z = -z;		}	else		sgngaml = 1;	if( x == 2.0L )		return( logl(z) );	x = (nx - 2.0L) + f;	p = x * polevll( x, B, 6 ) / p1evll( x, C, 7);	return( logl(z) + p );	}if( x > MAXLGM )	{loverf:#ifdef INFINITIES	return( sgngaml * INFINITYL );#else	mtherr( "lgaml", OVERFLOW );	return( sgngaml * MAXNUML );#endif	}q = ( x - 0.5L ) * logl(x) - x + LS2PI;if( x > 1.0e10L )	return(q);p = 1.0L/(x*x);q += polevll( p, A, 6 ) / x;return( q );lsmall:if( x == 0.0L )	goto loverf;if( x < 0.0L )	{	x = -x;	q = z / (x * polevll( x, SN, 8 ));	}else	q = z / (x * polevll( x, S, 8 ));if( q < 0.0L )	{	sgngaml = -1;	q = -q;	}else	sgngaml = 1;q = logl( q );return(q);}
 |