| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | /*							incbil() * *      Inverse of imcomplete beta integral * * * * SYNOPSIS: * * long double a, b, x, y, incbil(); * * x = incbil( a, b, y ); * * * * DESCRIPTION: * * Given y, the function finds x such that * *  incbet( a, b, x ) = y. * * the routine performs up to 10 Newton iterations to find the * root of incbet(a,b,x) - y = 0. * * * ACCURACY: * *                      Relative error: *                x       a,b * arithmetic   domain   domain   # trials    peak       rms *    IEEE      0,1    .5,10000    10000    1.1e-14   1.4e-16 *//*Cephes Math Library Release 2.3:  March, 1995Copyright 1984, 1995 by Stephen L. Moshier*/#include <math.h>extern long double MACHEPL, MAXNUML, MAXLOGL, MINLOGL;#ifdef ANSIPROTextern long double incbetl ( long double, long double, long double );extern long double expl ( long double );extern long double fabsl ( long double );extern long double logl ( long double );extern long double sqrtl ( long double );extern long double lgaml ( long double );extern long double ndtril ( long double );#elselong double incbetl(), expl(), fabsl(), logl(), sqrtl(), lgaml();long double ndtril();#endiflong double incbil( aa, bb, yy0 )long double aa, bb, yy0;{long double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;int i, rflg, dir, nflg;if( yy0 <= 0.0L )	return(0.0L);if( yy0 >= 1.0L )	return(1.0L);x0 = 0.0L;yl = 0.0L;x1 = 1.0L;yh = 1.0L;if( aa <= 1.0L || bb <= 1.0L )	{	dithresh = 1.0e-7L;	rflg = 0;	a = aa;	b = bb;	y0 = yy0;	x = a/(a+b);	y = incbetl( a, b, x );	nflg = 0;	goto ihalve;	}else	{	nflg = 0;	dithresh = 1.0e-4L;	}/* approximation to inverse function */yp = -ndtril( yy0 );if( yy0 > 0.5L )	{	rflg = 1;	a = bb;	b = aa;	y0 = 1.0L - yy0;	yp = -yp;	}else	{	rflg = 0;	a = aa;	b = bb;	y0 = yy0;	}lgm = (yp * yp - 3.0L)/6.0L;x = 2.0L/( 1.0L/(2.0L * a-1.0L)  +  1.0L/(2.0L * b - 1.0L) );d = yp * sqrtl( x + lgm ) / x	- ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) )	* (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x));d = 2.0L * d;if( d < MINLOGL )	{	x = 1.0L;	goto under;	}x = a/( a + b * expl(d) );y = incbetl( a, b, x );yp = (y - y0)/y0;if( fabsl(yp) < 0.2 )	goto newt;/* Resort to interval halving if not close enough. */ihalve:dir = 0;di = 0.5L;for( i=0; i<400; i++ )	{	if( i != 0 )		{		x = x0  +  di * (x1 - x0);		if( x == 1.0L )			x = 1.0L - MACHEPL;		if( x == 0.0L )			{			di = 0.5;			x = x0  +  di * (x1 - x0);			if( x == 0.0 )				goto under;			}		y = incbetl( a, b, x );		yp = (x1 - x0)/(x1 + x0);		if( fabsl(yp) < dithresh )			goto newt;		yp = (y-y0)/y0;		if( fabsl(yp) < dithresh )			goto newt;		}	if( y < y0 )		{		x0 = x;		yl = y;		if( dir < 0 )			{			dir = 0;			di = 0.5L;			}		else if( dir > 3 )			di = 1.0L - (1.0L - di) * (1.0L - di);		else if( dir > 1 )			di = 0.5L * di + 0.5L; 		else			di = (y0 - y)/(yh - yl);		dir += 1;		if( x0 > 0.95L )			{			if( rflg == 1 )				{				rflg = 0;				a = aa;				b = bb;				y0 = yy0;				}			else				{				rflg = 1;				a = bb;				b = aa;				y0 = 1.0 - yy0;				}			x = 1.0L - x;			y = incbetl( a, b, x );			x0 = 0.0;			yl = 0.0;			x1 = 1.0;			yh = 1.0;			goto ihalve;			}		}	else		{		x1 = x;		if( rflg == 1 && x1 < MACHEPL )			{			x = 0.0L;			goto done;			}		yh = y;		if( dir > 0 )			{			dir = 0;			di = 0.5L;			}		else if( dir < -3 )			di = di * di;		else if( dir < -1 )			di = 0.5L * di;		else			di = (y - y0)/(yh - yl);		dir -= 1;		}	}mtherr( "incbil", PLOSS );if( x0 >= 1.0L )	{	x = 1.0L - MACHEPL;	goto done;	}if( x <= 0.0L )	{under:	mtherr( "incbil", UNDERFLOW );	x = 0.0L;	goto done;	}newt:if( nflg )	goto done;nflg = 1;lgm = lgaml(a+b) - lgaml(a) - lgaml(b);for( i=0; i<15; i++ )	{	/* Compute the function at this point. */	if( i != 0 )		y = incbetl(a,b,x);	if( y < yl )		{		x = x0;		y = yl;		}	else if( y > yh )		{		x = x1;		y = yh;		}	else if( y < y0 )		{		x0 = x;		yl = y;		}	else		{		x1 = x;		yh = y;		}	if( x == 1.0L || x == 0.0L )		break;	/* Compute the derivative of the function at this point. */	d = (a - 1.0L) * logl(x) + (b - 1.0L) * logl(1.0L - x) + lgm;	if( d < MINLOGL )		goto done;	if( d > MAXLOGL )		break;	d = expl(d);	/* Compute the step to the next approximation of x. */	d = (y - y0)/d;	xt = x - d;	if( xt <= x0 )		{		y = (x - x0) / (x1 - x0);		xt = x0 + 0.5L * y * (x - x0);		if( xt <= 0.0L )			break;		}	if( xt >= x1 )		{		y = (x1 - x) / (x1 - x0);		xt = x1 - 0.5L * y * (x1 - x);		if( xt >= 1.0L )			break;		}	x = xt;	if( fabsl(d/x) < (128.0L * MACHEPL) )		goto done;	}/* Did not converge.  */dithresh = 256.0L * MACHEPL;goto ihalve;done:if( rflg )	{	if( x <= MACHEPL )		x = 1.0L - MACHEPL;	else		x = 1.0L - x;	}return( x );}
 |