| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 | /*							j1l.c * *	Bessel function of order one * * * * SYNOPSIS: * * long double x, y, j1l(); * * y = j1l( x ); * * * * DESCRIPTION: * * Returns Bessel function of order one of the argument. * * The domain is divided into the intervals [0, 9] and * (9, infinity). In the first interval the rational approximation * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2), * where r, s, t are the first three zeros of the function. * In the second interval the expansion is in terms of the * modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x) * = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x). * The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)). * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    IEEE      0, 30        40000      1.8e-19      5.0e-20 * * *//*							y1l.c * *	Bessel function of the second kind, order zero * * * * SYNOPSIS: * * double x, y, y1l(); * * y = y1l( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind, of order * zero, of the argument. * * The domain is divided into the intervals [0, 4.5>, [4.5,9> and * [9, infinity). In the first interval a rational approximation * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x). * * In the second interval, the approximation is *     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x) * where p, q, r, s are zeros of y1(x). * * The third interval uses the same approximations to modulus * and phase as j1(x), whence y1(x) = modulus * sin(phase). * * ACCURACY: * *  Absolute error, when y0(x) < 1; else relative error: * * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       36000       2.7e-19     5.3e-20 * *//* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com).  */#include <math.h>/*j1(x) = (x^2-r0^2)(x^2-r1^2)(x^2-r2^2) x P(x**2)/Q(x**2)0 <= x <= 9Relative errorn=8, d=8Peak error =  2e-21*/#if UNKstatic long double j1n[9] = {-2.63469779622127762897E-4L, 9.31329762279632791262E-1L,-1.46280142797793933909E3L, 1.32000129539331214495E6L,-7.41183271195454042842E8L, 2.626500686552841932403E11L,-5.68263073022183470933E13L, 6.80006297997263446982E15L,-3.41470097444474566748E17L,};static long double j1d[8] = {/* 1.00000000000000000000E0L,*/ 2.95267951972943745733E3L, 4.78723926343829674773E6L, 5.37544732957807543920E9L, 4.46866213886267829490E12L, 2.76959756375961607085E15L, 1.23367806884831151194E18L, 3.57325874689695599524E20L, 5.10779045516141578461E22L,};#endif#if IBMPCstatic short j1n[] = {0xf72f,0x18cc,0x50b2,0x8a22,0xbff3, XPD0x6dc3,0xc850,0xa096,0xee6b,0x3ffe, XPD0x29f3,0x496b,0xa54c,0xb6d9,0xc009, XPD0x38f5,0xf72b,0x0a5c,0xa122,0x4013, XPD0x1ac8,0xc825,0x3c9c,0xb0b6,0xc01c, XPD0x038e,0xbd23,0xa7fa,0xf49c,0x4024, XPD0x636c,0x4d29,0x9f71,0xcebb,0xc02c, XPD0xd3c2,0xf8f0,0xf852,0xc144,0x4033, XPD0xd8d8,0x7311,0xa7d2,0x97a4,0xc039, XPD};static short j1d[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0xbaf9,0x146e,0xdf50,0xb88a,0x400a, XPD0x6a17,0xe162,0x4e86,0x9218,0x4015, XPD0x6041,0xc9fe,0x6890,0xa033,0x401f, XPD0xb498,0xfdd5,0x209e,0x820e,0x4029, XPD0x0122,0x56c0,0xf2ef,0x9d6e,0x4032, XPD0xe6c0,0xa725,0x3d56,0x88f7,0x403b, XPD0x665d,0xb178,0x242e,0x9af7,0x4043, XPD0xdd67,0xf5b3,0x0522,0xad0f,0x404a, XPD};#endif#if MIEEEstatic long j1n[27] = {0xbff30000,0x8a2250b2,0x18ccf72f,0x3ffe0000,0xee6ba096,0xc8506dc3,0xc0090000,0xb6d9a54c,0x496b29f3,0x40130000,0xa1220a5c,0xf72b38f5,0xc01c0000,0xb0b63c9c,0xc8251ac8,0x40240000,0xf49ca7fa,0xbd23038e,0xc02c0000,0xcebb9f71,0x4d29636c,0x40330000,0xc144f852,0xf8f0d3c2,0xc0390000,0x97a4a7d2,0x7311d8d8,};static long j1d[24] = {/*0x3fff0000,0x80000000,0x00000000,*/0x400a0000,0xb88adf50,0x146ebaf9,0x40150000,0x92184e86,0xe1626a17,0x401f0000,0xa0336890,0xc9fe6041,0x40290000,0x820e209e,0xfdd5b498,0x40320000,0x9d6ef2ef,0x56c00122,0x403b0000,0x88f73d56,0xa725e6c0,0x40430000,0x9af7242e,0xb178665d,0x404a0000,0xad0f0522,0xf5b3dd67,};#endif/*sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2)z(x) = 1/sqrt(x)Relative errorn=7, d=8Peak error =  1.35e=20Relative error spread =  9.9e0*/#if UNKstatic long double modulusn[8] = {-5.041742205078442098874E0L, 3.918474430130242177355E-1L, 2.527521168680500659056E0L, 7.172146812845906480743E0L, 2.859499532295180940060E0L, 1.014671139779858141347E0L, 1.255798064266130869132E-1L, 1.596507617085714650238E-2L,};static long double modulusd[8] = {/* 1.000000000000000000000E0L,*/-6.233092094568239317498E0L,-9.214128701852838347002E-1L, 2.531772200570435289832E0L, 8.755081357265851765640E0L, 3.554340386955608261463E0L, 1.267949948774331531237E0L, 1.573909467558180942219E-1L, 2.000925566825407466160E-2L,};#endif#if IBMPCstatic short modulusn[] = {0x3d53,0xb598,0xf3bf,0xa155,0xc001, XPD0x3111,0x863a,0x3a61,0xc8a0,0x3ffd, XPD0x7d55,0xdb8c,0xe825,0xa1c2,0x4000, XPD0xe5e2,0x6914,0x3a08,0xe582,0x4001, XPD0x71e6,0x88a5,0x0a53,0xb702,0x4000, XPD0x2cb0,0xc657,0xbe70,0x81e0,0x3fff, XPD0x6de4,0x8fae,0xfe26,0x8097,0x3ffc, XPD0xa905,0x05fb,0x3101,0x82c9,0x3ff9, XPD};static short modulusd[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0x2603,0x640e,0x7d8d,0xc775,0xc001, XPD0x77b5,0x8f2d,0xb6bf,0xebe1,0xbffe, XPD0x6420,0x97ce,0x8e44,0xa208,0x4000, XPD0x0260,0x746b,0xd030,0x8c14,0x4002, XPD0x77b6,0x34e2,0x501a,0xe37a,0x4000, XPD0x37ce,0x79ae,0x2f15,0xa24c,0x3fff, XPD0xfc82,0x02c7,0x17a4,0xa12b,0x3ffc, XPD0x1237,0xcc6c,0x7356,0xa3ea,0x3ff9, XPD};#endif#if MIEEEstatic long modulusn[24] = {0xc0010000,0xa155f3bf,0xb5983d53,0x3ffd0000,0xc8a03a61,0x863a3111,0x40000000,0xa1c2e825,0xdb8c7d55,0x40010000,0xe5823a08,0x6914e5e2,0x40000000,0xb7020a53,0x88a571e6,0x3fff0000,0x81e0be70,0xc6572cb0,0x3ffc0000,0x8097fe26,0x8fae6de4,0x3ff90000,0x82c93101,0x05fba905,};static long modulusd[24] = {/*0x3fff0000,0x80000000,0x00000000,*/0xc0010000,0xc7757d8d,0x640e2603,0xbffe0000,0xebe1b6bf,0x8f2d77b5,0x40000000,0xa2088e44,0x97ce6420,0x40020000,0x8c14d030,0x746b0260,0x40000000,0xe37a501a,0x34e277b6,0x3fff0000,0xa24c2f15,0x79ae37ce,0x3ffc0000,0xa12b17a4,0x02c7fc82,0x3ff90000,0xa3ea7356,0xcc6c1237,};#endif/*atan(y1(x)/j1(x))  =  x - 3pi/4 + z P(z**2)/Q(z**2)z(x) = 1/xAbsolute errorn=5, d=6Peak error =  4.83e-21Relative error spread =  1.9e0*/#if UNKstatic long double phasen[6] = { 2.010456367705144783933E0L, 1.587378144541918176658E0L, 2.682837461073751055565E-1L, 1.472572645054468815027E-2L, 2.884976126715926258586E-4L, 1.708502235134706284899E-6L,};static long double phased[6] = {/* 1.000000000000000000000E0L,*/ 6.809332495854873089362E0L, 4.518597941618813112665E0L, 7.320149039410806471101E-1L, 3.960155028960712309814E-2L, 7.713202197319040439861E-4L, 4.556005960359216767984E-6L,};#endif#if IBMPCstatic short phasen[] = {0xebc0,0x5506,0x512f,0x80ab,0x4000, XPD0x6050,0x98aa,0x3500,0xcb2f,0x3fff, XPD0xe907,0x28b9,0x7cb7,0x895c,0x3ffd, XPD0xa830,0xf4a3,0x2c60,0xf144,0x3ff8, XPD0xf74f,0xbe87,0x7e7d,0x9741,0x3ff3, XPD0x540c,0xc1d5,0xb096,0xe54f,0x3feb, XPD};static short phased[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0xefe3,0x292c,0x0d43,0xd9e6,0x4001, XPD0xb1f2,0xe0d2,0x5ab5,0x9098,0x4001, XPD0xc39e,0x9c8c,0x5428,0xbb65,0x3ffe, XPD0x98f8,0xd610,0x3c35,0xa235,0x3ffa, XPD0xa853,0x55fb,0x6c79,0xca32,0x3ff4, XPD0x8d72,0x2be3,0xcb0f,0x98df,0x3fed, XPD};#endif#if MIEEEstatic long phasen[18] = {0x40000000,0x80ab512f,0x5506ebc0,0x3fff0000,0xcb2f3500,0x98aa6050,0x3ffd0000,0x895c7cb7,0x28b9e907,0x3ff80000,0xf1442c60,0xf4a3a830,0x3ff30000,0x97417e7d,0xbe87f74f,0x3feb0000,0xe54fb096,0xc1d5540c,};static long phased[18] = {/*0x3fff0000,0x80000000,0x00000000,*/0x40010000,0xd9e60d43,0x292cefe3,0x40010000,0x90985ab5,0xe0d2b1f2,0x3ffe0000,0xbb655428,0x9c8cc39e,0x3ffa0000,0xa2353c35,0xd61098f8,0x3ff40000,0xca326c79,0x55fba853,0x3fed0000,0x98dfcb0f,0x2be38d72,};#endif#define JZ1 1.46819706421238932572e1L#define JZ2 4.92184563216946036703e1L#define JZ3 1.03499453895136580332e2L#define THPIO4L  2.35619449019234492885L#ifdef ANSIPROTextern long double sqrtl ( long double );extern long double fabsl ( long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern long double cosl ( long double );extern long double sinl ( long double );extern long double logl ( long double );long double j1l (long double );#elselong double sqrtl(), fabsl(), polevll(), p1evll(), cosl(), sinl(), logl();long double j1l();#endiflong double j1l(x)long double x;{long double xx, y, z, modulus, phase;xx = x * x;if( xx < 81.0L )  {    y = (xx - JZ1) * (xx - JZ2) * (xx - JZ3);    y *= x * polevll( xx, j1n, 8 ) / p1evll( xx, j1d, 8 );    return y;  }y = fabsl(x);xx = 1.0/xx;phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );z = 1.0/y;modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 8 );y = modulus * cosl( y -  THPIO4L + z*phase) / sqrtl(y);if( x < 0 )  y = -y;return y;}/*y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + R(x^2) z P(z**2)/Q(z**2)0 <= x <= 4.5z(x) = xAbsolute errorn=6, d=7Peak error =  7.25e-22Relative error spread =  4.5e-2*/#if UNKstatic long double y1n[7] = {-1.288901054372751879531E5L, 9.914315981558815369372E7L,-2.906793378120403577274E10L, 3.954354656937677136266E12L,-2.445982226888344140154E14L, 5.685362960165615942886E15L,-2.158855258453711703120E16L,};static long double y1d[7] = {/* 1.000000000000000000000E0L,*/ 8.926354644853231136073E2L, 4.679841933793707979659E5L, 1.775133253792677466651E8L, 5.089532584184822833416E10L, 1.076474894829072923244E13L, 1.525917240904692387994E15L, 1.101136026928555260168E17L,};#endif#if IBMPCstatic short y1n[] = {0x5b16,0xf7f8,0x0d7e,0xfbbd,0xc00f, XPD0x53e4,0x194c,0xbefa,0xbd19,0x4019, XPD0x7607,0xa687,0xaf0a,0xd892,0xc021, XPD0x5633,0xaa6b,0x79e5,0xe62c,0x4028, XPD0x69fd,0x1242,0xf62d,0xde75,0xc02e, XPD0x7f8b,0x4757,0x75bd,0xa196,0x4033, XPD0x3a10,0x0848,0x5930,0x9965,0xc035, XPD};static short y1d[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0xdd1a,0x3b8e,0xab73,0xdf28,0x4008, XPD0x298c,0x29ef,0x0630,0xe482,0x4011, XPD0x0e86,0x117b,0x36d6,0xa94a,0x401a, XPD0x57e0,0x1d92,0x90a9,0xbd99,0x4022, XPD0xaaf0,0x342b,0xd098,0x9ca5,0x402a, XPD0x8c6a,0x397e,0x0963,0xad7a,0x4031, XPD0x7302,0xb91b,0xde7e,0xc399,0x4037, XPD};#endif#if MIEEEstatic long y1n[21] = {0xc00f0000,0xfbbd0d7e,0xf7f85b16,0x40190000,0xbd19befa,0x194c53e4,0xc0210000,0xd892af0a,0xa6877607,0x40280000,0xe62c79e5,0xaa6b5633,0xc02e0000,0xde75f62d,0x124269fd,0x40330000,0xa19675bd,0x47577f8b,0xc0350000,0x99655930,0x08483a10,};static long y1d[21] = {/*0x3fff0000,0x80000000,0x00000000,*/0x40080000,0xdf28ab73,0x3b8edd1a,0x40110000,0xe4820630,0x29ef298c,0x401a0000,0xa94a36d6,0x117b0e86,0x40220000,0xbd9990a9,0x1d9257e0,0x402a0000,0x9ca5d098,0x342baaf0,0x40310000,0xad7a0963,0x397e8c6a,0x40370000,0xc399de7e,0xb91b7302,};#endif/*y1(x) = (x-YZ1)(x-YZ2)(x-YZ3)(x-YZ4)R(x) P(z)/Q(z)z(x) = x4.5 <= x <= 9Absolute errorn=9, d=10Peak error =  3.27e-22Relative error spread =  4.5e-2*/#if UNKstatic long double y159n[10] = {-6.806634906054210550896E-1L, 4.306669585790359450532E1L,-9.230477746767243316014E2L, 6.171186628598134035237E3L, 2.096869860275353982829E4L,-1.238961670382216747944E5L,-1.781314136808997406109E6L,-1.803400156074242435454E6L,-1.155761550219364178627E6L, 3.112221202330688509818E5L,};static long double y159d[10] = {/* 1.000000000000000000000E0L,*/-6.181482377814679766978E1L, 2.238187927382180589099E3L,-5.225317824142187494326E4L, 9.217235006983512475118E5L,-1.183757638771741974521E7L, 1.208072488974110742912E8L,-8.193431077523942651173E8L, 4.282669747880013349981E9L,-1.171523459555524458808E9L, 1.078445545755236785692E8L,};#endif#if IBMPCstatic short y159n[] = {0xb5e5,0xbb42,0xf667,0xae3f,0xbffe, XPD0xfdf1,0x41e5,0x4beb,0xac44,0x4004, XPD0xe917,0x8486,0x0ebd,0xe6c3,0xc008, XPD0xdf40,0x226b,0x7e37,0xc0d9,0x400b, XPD0xb2bf,0x4296,0x65af,0xa3d1,0x400d, XPD0xa33b,0x8229,0x1561,0xf1fc,0xc00f, XPD0xcd43,0x2f50,0x1118,0xd972,0xc013, XPD0x3811,0xa3da,0x413f,0xdc24,0xc013, XPD0xf62f,0xd968,0x8c66,0x8d15,0xc013, XPD0x539b,0xf305,0xc3d8,0x97f6,0x4011, XPD};static short y159d[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/0x1a6c,0x1c93,0x612a,0xf742,0xc004, XPD0xd0fe,0x2487,0x01c0,0x8be3,0x400a, XPD0xbed4,0x3ad5,0x2da1,0xcc1d,0xc00e, XPD0x3c4f,0xdc46,0xb802,0xe107,0x4012, XPD0xe5e5,0x4172,0x8863,0xb4a0,0xc016, XPD0x6de5,0xb797,0xea1c,0xe66b,0x4019, XPD0xa46a,0x0273,0xbc0f,0xc358,0xc01c, XPD0x8e0e,0xe148,0x5ab3,0xff44,0x401e, XPD0xb3ad,0x1c6d,0x0f07,0x8ba8,0xc01d, XPD0xa231,0x6ab0,0x7952,0xcdb2,0x4019, XPD};#endif#if MIEEEstatic long y159n[30] = {0xbffe0000,0xae3ff667,0xbb42b5e5,0x40040000,0xac444beb,0x41e5fdf1,0xc0080000,0xe6c30ebd,0x8486e917,0x400b0000,0xc0d97e37,0x226bdf40,0x400d0000,0xa3d165af,0x4296b2bf,0xc00f0000,0xf1fc1561,0x8229a33b,0xc0130000,0xd9721118,0x2f50cd43,0xc0130000,0xdc24413f,0xa3da3811,0xc0130000,0x8d158c66,0xd968f62f,0x40110000,0x97f6c3d8,0xf305539b,};static long y159d[30] = {/*0x3fff0000,0x80000000,0x00000000,*/0xc0040000,0xf742612a,0x1c931a6c,0x400a0000,0x8be301c0,0x2487d0fe,0xc00e0000,0xcc1d2da1,0x3ad5bed4,0x40120000,0xe107b802,0xdc463c4f,0xc0160000,0xb4a08863,0x4172e5e5,0x40190000,0xe66bea1c,0xb7976de5,0xc01c0000,0xc358bc0f,0x0273a46a,0x401e0000,0xff445ab3,0xe1488e0e,0xc01d0000,0x8ba80f07,0x1c6db3ad,0x40190000,0xcdb27952,0x6ab0a231,};#endifextern long double MAXNUML;/* #define MAXNUML 1.18973149535723176502e4932L */#define TWOOPI 6.36619772367581343075535e-1L#define THPIO4 2.35619449019234492885L#define Y1Z1 2.19714132603101703515e0L#define Y1Z2 5.42968104079413513277e0L#define Y1Z3 8.59600586833116892643e0L#define Y1Z4 1.17491548308398812434e1Llong double y1l(x)long double x;{long double xx, y, z, modulus, phase;if( x < 0.0 )  {    return (-MAXNUML);  }z = 1.0/x;xx = x * x;if( xx < 81.0L )  {    if( xx < 20.25L )      {	y = TWOOPI * (logl(x) * j1l(x) - z);	y += x * polevll( xx, y1n, 6 ) / p1evll( xx, y1d, 7 );      }    else      {	y = (x - Y1Z1)*(x - Y1Z2)*(x - Y1Z3)*(x - Y1Z4);	y *= polevll( x, y159n, 9 ) / p1evll( x, y159d, 10 );      }    return y;  }xx = 1.0/xx;phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 8 );z = modulus * sinl( x -  THPIO4L + z*phase) / sqrtl(x);return z;}
 |