| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 | /*							pdtrl.c * *	Poisson distribution * * * * SYNOPSIS: * * int k; * long double m, y, pdtrl(); * * y = pdtrl( k, m ); * * * * DESCRIPTION: * * Returns the sum of the first k terms of the Poisson * distribution: * *   k         j *   --   -m  m *   >   e    -- *   --       j! *  j=0 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the relation * * y = pdtr( k, m ) = igamc( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * *//*							pdtrcl() * *	Complemented poisson distribution * * * * SYNOPSIS: * * int k; * long double m, y, pdtrcl(); * * y = pdtrcl( k, m ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the Poisson * distribution: * *  inf.       j *   --   -m  m *   >   e    -- *   --       j! *  j=k+1 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the formula * * y = pdtrc( k, m ) = igam( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igam.c. * *//*							pdtril() * *	Inverse Poisson distribution * * * * SYNOPSIS: * * int k; * long double m, y, pdtrl(); * * m = pdtril( k, y ); * * * * * DESCRIPTION: * * Finds the Poisson variable x such that the integral * from 0 to x of the Poisson density is equal to the * given probability y. * * This is accomplished using the inverse gamma integral * function and the relation * *    m = igami( k+1, y ). * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * *   message         condition      value returned * pdtri domain    y < 0 or y >= 1       0.0 *                     k < 0 * *//*Cephes Math Library Release 2.3:  March, 1995Copyright 1984, 1995 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern long double igaml ( long double, long double );extern long double igamcl ( long double, long double );extern long double igamil ( long double, long double );#elselong double igaml(), igamcl(), igamil();#endiflong double pdtrcl( k, m )int k;long double m;{long double v;if( (k < 0) || (m <= 0.0L) )	{	mtherr( "pdtrcl", DOMAIN );	return( 0.0L );	}v = k+1;return( igaml( v, m ) );}long double pdtrl( k, m )int k;long double m;{long double v;if( (k < 0) || (m <= 0.0L) )	{	mtherr( "pdtrl", DOMAIN );	return( 0.0L );	}v = k+1;return( igamcl( v, m ) );}long double pdtril( k, y )int k;long double y;{long double v;if( (k < 0) || (y < 0.0L) || (y >= 1.0L) )	{	mtherr( "pdtril", DOMAIN );	return( 0.0L );	}v = k+1;v = igamil( v, y );return( v );}
 |