| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 | /*							sinhl.c * *	Hyperbolic sine, long double precision * * * * SYNOPSIS: * * long double x, y, sinhl(); * * y = sinhl( x ); * * * * DESCRIPTION: * * Returns hyperbolic sine of argument in the range MINLOGL to * MAXLOGL. * * The range is partitioned into two segments.  If |x| <= 1, a * rational function of the form x + x**3 P(x)/Q(x) is employed. * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE       -2,2       10000       1.5e-19     3.9e-20 *    IEEE     +-10000      30000       1.1e-19     2.8e-20 * *//*Cephes Math Library Release 2.7:  January, 1998Copyright 1984, 1991, 1998 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic long double P[] = { 1.7550769032975377032681E-6L, 4.1680702175874268714539E-4L, 3.0993532520425419002409E-2L, 9.9999999999999999998002E-1L,};static long double Q[] = { 1.7453965448620151484660E-8L,-5.9116673682651952419571E-6L, 1.0599252315677389339530E-3L,-1.1403880487744749056675E-1L, 6.0000000000000000000200E0L,};#endif#ifdef IBMPCstatic short P[] = {0xec6a,0xd942,0xfbb3,0xeb8f,0x3feb, XPD0x365e,0xb30a,0xe437,0xda86,0x3ff3, XPD0x8890,0x01f6,0x2612,0xfde6,0x3ff9, XPD0x0000,0x0000,0x0000,0x8000,0x3fff, XPD};static short Q[] = {0x4edd,0x4c21,0xad09,0x95ed,0x3fe5, XPD0x4376,0x9b70,0xd605,0xc65c,0xbfed, XPD0xc8ad,0x5d21,0x3069,0x8aed,0x3ff5, XPD0x9c32,0x6374,0x2d4b,0xe98d,0xbffb, XPD0x0000,0x0000,0x0000,0xc000,0x4001, XPD};#endif#ifdef MIEEEstatic long P[] = {0x3feb0000,0xeb8ffbb3,0xd942ec6a,0x3ff30000,0xda86e437,0xb30a365e,0x3ff90000,0xfde62612,0x01f68890,0x3fff0000,0x80000000,0x00000000,};static long Q[] = {0x3fe50000,0x95edad09,0x4c214edd,0xbfed0000,0xc65cd605,0x9b704376,0x3ff50000,0x8aed3069,0x5d21c8ad,0xbffb0000,0xe98d2d4b,0x63749c32,0x40010000,0xc0000000,0x00000000,};#endifextern long double MAXNUML, MAXLOGL, MINLOGL, LOGE2L;#ifdef ANSIPROTextern long double fabsl ( long double );extern long double expl ( long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );#elselong double fabsl(), expl(), polevll(), p1evll();#endif#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef NANSextern long double NANL;#endiflong double sinhl(x)long double x;{long double a;#ifdef MINUSZEROif( x == 0.0 )	return(x);#endifa = fabsl(x);if( (x > (MAXLOGL + LOGE2L)) || (x > -(MINLOGL-LOGE2L) ) )	{	mtherr( "sinhl", DOMAIN );#ifdef INFINITIES	if( x > 0.0L )		return( INFINITYL );	else		return( -INFINITYL );#else	if( x > 0.0L )		return( MAXNUML );	else		return( -MAXNUML );#endif	}if( a > 1.0L )	{	if( a >= (MAXLOGL - LOGE2L) )		{		a = expl(0.5L*a);		a = (0.5L * a) * a;		if( x < 0.0L )			a = -a;		return(a);		}	a = expl(a);	a = 0.5L*a - (0.5L/a);	if( x < 0.0L )		a = -a;	return(a);	}a *= a;return( x + x * a * (polevll(a,P,3)/polevll(a,Q,4)) );}
 |