| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 | /* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>.  *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* __ieee754_log2(x) * Return the logarithm to base 2 of x * * Method : *   1. Argument Reduction: find k and f such that *			x = 2^k * (1+f), *	   where  sqrt(2)/2 < 1+f < sqrt(2) . * *   2. Approximation of log(1+f). *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., *	     	 = 2s + s*R *      We use a special Reme algorithm on [0,0.1716] to generate * 	a polynomial of degree 14 to approximate R The maximum error *	of this polynomial approximation is bounded by 2**-58.45. In *	other words, *		        2      4      6      8      10      12      14 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s *  	(the values of Lg1 to Lg7 are listed in the program) *	and *	    |      2          14          |     -58.45 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2 *	    |                             | *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. *	In order to guarantee error in log below 1ulp, we compute log *	by *		log(1+f) = f - s*(f - R)	(if f is not too large) *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) * *	3. Finally,  log(x) = k + log(1+f). *			    = k+(f-(hfsq-(s*(hfsq+R)))) * * Special cases: *	log2(x) is NaN with signal if x < 0 (including -INF) ; *	log2(+INF) is +INF; log(0) is -INF with signal; *	log2(NaN) is that NaN with no signal. * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "math.h"#include "math_private.h"static const doubleln2 = 0.69314718055994530942,two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */static const double zero   =  0.0;double __ieee754_log2(double x){	double hfsq,f,s,z,R,w,t1,t2,dk;	int32_t k,hx,i,j;	u_int32_t lx;	EXTRACT_WORDS(hx,lx,x);	k=0;	if (hx < 0x00100000) {			/* x < 2**-1022  */	    if (((hx&0x7fffffff)|lx)==0)		return -two54/(x-x);		/* log(+-0)=-inf */	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */	    k -= 54; x *= two54; /* subnormal number, scale up x */	    GET_HIGH_WORD(hx,x);	}	if (hx >= 0x7ff00000) return x+x;	k += (hx>>20)-1023;	hx &= 0x000fffff;	i = (hx+0x95f64)&0x100000;	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */	k += (i>>20);	dk = (double) k;	f = x-1.0;	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */	    if(f==zero) return dk;	    R = f*f*(0.5-0.33333333333333333*f);	    return dk-(R-f)/ln2;	}	s = f/(2.0+f);	z = s*s;	i = hx-0x6147a;	w = z*z;	j = 0x6b851-hx;	t1= w*(Lg2+w*(Lg4+w*Lg6));	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));	i |= j;	R = t2+t1;	if(i>0) {	    hfsq=0.5*f*f;	    return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;	} else {	    return dk-((s*(f-R))-f)/ln2;	}}strong_alias(__ieee754_log2,log2)libm_hidden_def(log2)
 |