123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- /* incbif()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, incbif();
- *
- * x = incbif( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y.
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
- *
- * Overflow and larger errors may occur for one of a or b near zero
- * and the other large.
- */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- extern float MACHEPF, MINLOGF;
- #define fabsf(x) ( (x) < 0 ? -(x) : (x) )
- #ifdef ANSIC
- float incbetf(float, float, float);
- float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float);
- #else
- float incbetf();
- float ndtrif(), expf(), logf(), sqrtf(), lgamf();
- #endif
- float incbif( float aaa, float bbb, float yyy0 )
- {
- float aa, bb, yy0, a, b, y0;
- float d, y, x, x0, x1, lgm, yp, di;
- int i, rflg;
- aa = aaa;
- bb = bbb;
- yy0 = yyy0;
- if( yy0 <= 0 )
- return(0.0);
- if( yy0 >= 1.0 )
- return(1.0);
- /* approximation to inverse function */
- yp = -ndtrif(yy0);
- if( yy0 > 0.5 )
- {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- yp = -yp;
- }
- else
- {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
- if( (aa <= 1.0) || (bb <= 1.0) )
- {
- y = 0.5 * yp * yp;
- }
- else
- {
- lgm = (yp * yp - 3.0)* 0.16666666666666667;
- x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
- y = yp * sqrtf( x0 + lgm ) / x0
- - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
- * (lgm + 0.833333333333333333 - 2.0/(3.0*x0));
- y = 2.0 * y;
- if( y < MINLOGF )
- {
- x0 = 1.0;
- goto under;
- }
- }
- x = a/( a + b * expf(y) );
- y = incbetf( a, b, x );
- yp = (y - y0)/y0;
- if( fabsf(yp) < 0.1 )
- goto newt;
- /* Resort to interval halving if not close enough */
- x0 = 0.0;
- x1 = 1.0;
- di = 0.5;
- for( i=0; i<20; i++ )
- {
- if( i != 0 )
- {
- x = di * x1 + (1.0-di) * x0;
- y = incbetf( a, b, x );
- yp = (y - y0)/y0;
- if( fabsf(yp) < 1.0e-3 )
- goto newt;
- }
- if( y < y0 )
- {
- x0 = x;
- di = 0.5;
- }
- else
- {
- x1 = x;
- di *= di;
- if( di == 0.0 )
- di = 0.5;
- }
- }
- if( x0 == 0.0 )
- {
- under:
- mtherr( "incbif", UNDERFLOW );
- goto done;
- }
- newt:
- x0 = x;
- lgm = lgamf(a+b) - lgamf(a) - lgamf(b);
- for( i=0; i<10; i++ )
- {
- /* compute the function at this point */
- if( i != 0 )
- y = incbetf(a,b,x0);
- /* compute the derivative of the function at this point */
- d = (a - 1.0) * logf(x0) + (b - 1.0) * logf(1.0-x0) + lgm;
- if( d < MINLOGF )
- {
- x0 = 0.0;
- goto under;
- }
- d = expf(d);
- /* compute the step to the next approximation of x */
- d = (y - y0)/d;
- x = x0;
- x0 = x0 - d;
- if( x0 <= 0.0 )
- {
- x0 = 0.0;
- goto under;
- }
- if( x0 >= 1.0 )
- {
- x0 = 1.0;
- goto under;
- }
- if( i < 2 )
- continue;
- if( fabsf(d/x0) < 256.0 * MACHEPF )
- goto done;
- }
- done:
- if( rflg )
- x0 = 1.0 - x0;
- return( x0 );
- }
|