123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /* ndtrif.c
- *
- * Inverse of Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ndtrif();
- *
- * x = ndtrif( y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the argument, x, for which the area under the
- * Gaussian probability density function (integrated from
- * minus infinity to x) is equal to y.
- *
- *
- * For small arguments 0 < y < exp(-2), the program computes
- * z = sqrt( -2.0 * log(y) ); then the approximation is
- * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
- * There are two rational functions P/Q, one for 0 < y < exp(-32)
- * and the other for y up to exp(-2). For larger arguments,
- * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ndtrif domain x <= 0 -MAXNUM
- * ndtrif domain x >= 1 MAXNUM
- *
- */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- extern float MAXNUMF;
- /* sqrt(2pi) */
- static float s2pi = 2.50662827463100050242;
- /* approximation for 0 <= |y - 0.5| <= 3/8 */
- static float P0[5] = {
- -5.99633501014107895267E1,
- 9.80010754185999661536E1,
- -5.66762857469070293439E1,
- 1.39312609387279679503E1,
- -1.23916583867381258016E0,
- };
- static float Q0[8] = {
- /* 1.00000000000000000000E0,*/
- 1.95448858338141759834E0,
- 4.67627912898881538453E0,
- 8.63602421390890590575E1,
- -2.25462687854119370527E2,
- 2.00260212380060660359E2,
- -8.20372256168333339912E1,
- 1.59056225126211695515E1,
- -1.18331621121330003142E0,
- };
- /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
- * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- */
- static float P1[9] = {
- 4.05544892305962419923E0,
- 3.15251094599893866154E1,
- 5.71628192246421288162E1,
- 4.40805073893200834700E1,
- 1.46849561928858024014E1,
- 2.18663306850790267539E0,
- -1.40256079171354495875E-1,
- -3.50424626827848203418E-2,
- -8.57456785154685413611E-4,
- };
- static float Q1[8] = {
- /* 1.00000000000000000000E0,*/
- 1.57799883256466749731E1,
- 4.53907635128879210584E1,
- 4.13172038254672030440E1,
- 1.50425385692907503408E1,
- 2.50464946208309415979E0,
- -1.42182922854787788574E-1,
- -3.80806407691578277194E-2,
- -9.33259480895457427372E-4,
- };
- /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
- * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- */
- static float P2[9] = {
- 3.23774891776946035970E0,
- 6.91522889068984211695E0,
- 3.93881025292474443415E0,
- 1.33303460815807542389E0,
- 2.01485389549179081538E-1,
- 1.23716634817820021358E-2,
- 3.01581553508235416007E-4,
- 2.65806974686737550832E-6,
- 6.23974539184983293730E-9,
- };
- static float Q2[8] = {
- /* 1.00000000000000000000E0,*/
- 6.02427039364742014255E0,
- 3.67983563856160859403E0,
- 1.37702099489081330271E0,
- 2.16236993594496635890E-1,
- 1.34204006088543189037E-2,
- 3.28014464682127739104E-4,
- 2.89247864745380683936E-6,
- 6.79019408009981274425E-9,
- };
- #ifdef ANSIC
- float polevlf(float, float *, int);
- float p1evlf(float, float *, int);
- float logf(float), sqrtf(float);
- #else
- float polevlf(), p1evlf(), logf(), sqrtf();
- #endif
- float ndtrif(float yy0)
- {
- float y0, x, y, z, y2, x0, x1;
- int code;
- y0 = yy0;
- if( y0 <= 0.0 )
- {
- mtherr( "ndtrif", DOMAIN );
- return( -MAXNUMF );
- }
- if( y0 >= 1.0 )
- {
- mtherr( "ndtrif", DOMAIN );
- return( MAXNUMF );
- }
- code = 1;
- y = y0;
- if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */
- {
- y = 1.0 - y;
- code = 0;
- }
- if( y > 0.13533528323661269189 )
- {
- y = y - 0.5;
- y2 = y * y;
- x = y + y * (y2 * polevlf( y2, P0, 4)/p1evlf( y2, Q0, 8 ));
- x = x * s2pi;
- return(x);
- }
- x = sqrtf( -2.0 * logf(y) );
- x0 = x - logf(x)/x;
- z = 1.0/x;
- if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */
- x1 = z * polevlf( z, P1, 8 )/p1evlf( z, Q1, 8 );
- else
- x1 = z * polevlf( z, P2, 8 )/p1evlf( z, Q2, 8 );
- x = x0 - x1;
- if( code != 0 )
- x = -x;
- return( x );
- }
|