123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- /* asinhl.c
- *
- * Inverse hyperbolic sine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, asinhl();
- *
- * y = asinhl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic sine of argument.
- *
- * If |x| < 0.5, the function is approximated by a rational
- * form x + x**3 P(x)/Q(x). Otherwise,
- *
- * asinh(x) = log( x + sqrt(1 + x*x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -3,3 30000 1.7e-19 3.5e-20
- *
- */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1984, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double P[] = {
- -7.2157234864927687427374E-1L,
- -1.3005588097490352458918E1L,
- -5.9112383795679709212744E1L,
- -9.5372702442289028811361E1L,
- -4.9802880260861844539014E1L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0L,*/
- 2.8754968540389640419671E1L,
- 2.0990255691901160529390E2L,
- 5.9265075560893800052658E2L,
- 7.0670399135805956780660E2L,
- 2.9881728156517107462943E2L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0x8f42,0x2584,0xf727,0xb8b8,0xbffe, XPD
- 0x9d56,0x7f7c,0xe38b,0xd016,0xc002, XPD
- 0xc518,0xdc2d,0x14bc,0xec73,0xc004, XPD
- 0x99fe,0xc18a,0xd2da,0xbebe,0xc005, XPD
- 0xb46c,0x3c05,0x263e,0xc736,0xc004, XPD
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0xdfed,0x33db,0x2cf2,0xe60a,0x4003, XPD
- 0xf109,0x61ee,0x0df8,0xd1e7,0x4006, XPD
- 0xf21e,0xda84,0xa5fa,0x9429,0x4008, XPD
- 0x13fc,0xc4e2,0x0e31,0xb0ad,0x4008, XPD
- 0x485c,0xad04,0x9cae,0x9568,0x4007, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0xbffe0000,0xb8b8f727,0x25848f42,
- 0xc0020000,0xd016e38b,0x7f7c9d56,
- 0xc0040000,0xec7314bc,0xdc2dc518,
- 0xc0050000,0xbebed2da,0xc18a99fe,
- 0xc0040000,0xc736263e,0x3c05b46c,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40030000,0xe60a2cf2,0x33dbdfed,
- 0x40060000,0xd1e70df8,0x61eef109,
- 0x40080000,0x9429a5fa,0xda84f21e,
- 0x40080000,0xb0ad0e31,0xc4e213fc,
- 0x40070000,0x95689cae,0xad04485c,
- };
- #endif
- extern long double LOGE2L;
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef ANSIPROT
- extern long double logl ( long double );
- extern long double sqrtl ( long double );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern int isnanl ( long double );
- extern int isfinitel ( long double );
- #else
- long double logl(), sqrtl(), polevll(), p1evll(), isnanl(), isfinitel();
- #endif
- long double asinhl(x)
- long double x;
- {
- long double a, z;
- int sign;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- #ifdef MINUSZERO
- if( x == 0.0L )
- return(x);
- #endif
- #ifdef INFINITIES
- if( !isfinitel(x) )
- return(x);
- #endif
- if( x < 0.0L )
- {
- sign = -1;
- x = -x;
- }
- else
- sign = 1;
- if( x > 1.0e10L )
- {
- return( sign * (logl(x) + LOGE2L) );
- }
- z = x * x;
- if( x < 0.5L )
- {
- a = ( polevll(z, P, 4)/p1evll(z, Q, 5) ) * z;
- a = a * x + x;
- if( sign < 0 )
- a = -a;
- return(a);
- }
- a = sqrtl( z + 1.0L );
- return( sign * logl(x + a) );
- }
|