memcmp.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /* Copyright (C) 1991,1993,1995,1997,1998,2003,2004
  2. Free Software Foundation, Inc.
  3. This file is part of the GNU C Library.
  4. Contributed by Torbjorn Granlund (tege@sics.se).
  5. The GNU C Library is free software; you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public
  7. License as published by the Free Software Foundation; either
  8. version 2.1 of the License, or (at your option) any later version.
  9. The GNU C Library is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. Lesser General Public License for more details.
  13. You should have received a copy of the GNU Lesser General Public
  14. License along with the GNU C Library; if not, write to the Free
  15. Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  16. 02111-1307 USA. */
  17. #include <string.h>
  18. #include "memcopy.h"
  19. #include <endian.h>
  20. #if __BYTE_ORDER == __BIG_ENDIAN
  21. # define WORDS_BIGENDIAN
  22. #endif
  23. #ifdef WORDS_BIGENDIAN
  24. # define CMP_LT_OR_GT(a, b) ((a) > (b) ? 1 : -1)
  25. #else
  26. # define CMP_LT_OR_GT(a, b) memcmp_bytes ((a), (b))
  27. #endif
  28. /* BE VERY CAREFUL IF YOU CHANGE THIS CODE! */
  29. /* The strategy of this memcmp is:
  30. 1. Compare bytes until one of the block pointers is aligned.
  31. 2. Compare using memcmp_common_alignment or
  32. memcmp_not_common_alignment, regarding the alignment of the other
  33. block after the initial byte operations. The maximum number of
  34. full words (of type op_t) are compared in this way.
  35. 3. Compare the few remaining bytes. */
  36. #ifndef WORDS_BIGENDIAN
  37. /* memcmp_bytes -- Compare A and B bytewise in the byte order of the machine.
  38. A and B are known to be different.
  39. This is needed only on little-endian machines. */
  40. static int memcmp_bytes __P((op_t, op_t));
  41. # ifdef __GNUC__
  42. __inline
  43. # endif
  44. static int
  45. memcmp_bytes (a, b)
  46. op_t a, b;
  47. {
  48. long int srcp1 = (long int) &a;
  49. long int srcp2 = (long int) &b;
  50. op_t a0, b0;
  51. do
  52. {
  53. a0 = ((byte *) srcp1)[0];
  54. b0 = ((byte *) srcp2)[0];
  55. srcp1 += 1;
  56. srcp2 += 1;
  57. }
  58. while (a0 == b0);
  59. return a0 - b0;
  60. }
  61. #endif
  62. static int memcmp_common_alignment __P((long, long, size_t));
  63. /* memcmp_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN `op_t'
  64. objects (not LEN bytes!). Both SRCP1 and SRCP2 should be aligned for
  65. memory operations on `op_t's. */
  66. static int
  67. memcmp_common_alignment (srcp1, srcp2, len)
  68. long int srcp1;
  69. long int srcp2;
  70. size_t len;
  71. {
  72. op_t a0, a1;
  73. op_t b0, b1;
  74. switch (len % 4)
  75. {
  76. default: /* Avoid warning about uninitialized local variables. */
  77. case 2:
  78. a0 = ((op_t *) srcp1)[0];
  79. b0 = ((op_t *) srcp2)[0];
  80. srcp1 -= 2 * OPSIZ;
  81. srcp2 -= 2 * OPSIZ;
  82. len += 2;
  83. goto do1;
  84. case 3:
  85. a1 = ((op_t *) srcp1)[0];
  86. b1 = ((op_t *) srcp2)[0];
  87. srcp1 -= OPSIZ;
  88. srcp2 -= OPSIZ;
  89. len += 1;
  90. goto do2;
  91. case 0:
  92. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  93. return 0;
  94. a0 = ((op_t *) srcp1)[0];
  95. b0 = ((op_t *) srcp2)[0];
  96. goto do3;
  97. case 1:
  98. a1 = ((op_t *) srcp1)[0];
  99. b1 = ((op_t *) srcp2)[0];
  100. srcp1 += OPSIZ;
  101. srcp2 += OPSIZ;
  102. len -= 1;
  103. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  104. goto do0;
  105. /* Fall through. */
  106. }
  107. do
  108. {
  109. a0 = ((op_t *) srcp1)[0];
  110. b0 = ((op_t *) srcp2)[0];
  111. if (a1 != b1)
  112. return CMP_LT_OR_GT (a1, b1);
  113. do3:
  114. a1 = ((op_t *) srcp1)[1];
  115. b1 = ((op_t *) srcp2)[1];
  116. if (a0 != b0)
  117. return CMP_LT_OR_GT (a0, b0);
  118. do2:
  119. a0 = ((op_t *) srcp1)[2];
  120. b0 = ((op_t *) srcp2)[2];
  121. if (a1 != b1)
  122. return CMP_LT_OR_GT (a1, b1);
  123. do1:
  124. a1 = ((op_t *) srcp1)[3];
  125. b1 = ((op_t *) srcp2)[3];
  126. if (a0 != b0)
  127. return CMP_LT_OR_GT (a0, b0);
  128. srcp1 += 4 * OPSIZ;
  129. srcp2 += 4 * OPSIZ;
  130. len -= 4;
  131. }
  132. while (len != 0);
  133. /* This is the right position for do0. Please don't move
  134. it into the loop. */
  135. do0:
  136. if (a1 != b1)
  137. return CMP_LT_OR_GT (a1, b1);
  138. return 0;
  139. }
  140. static int memcmp_not_common_alignment __P((long, long, size_t));
  141. /* memcmp_not_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN
  142. `op_t' objects (not LEN bytes!). SRCP2 should be aligned for memory
  143. operations on `op_t', but SRCP1 *should be unaligned*. */
  144. static int
  145. memcmp_not_common_alignment (srcp1, srcp2, len)
  146. long int srcp1;
  147. long int srcp2;
  148. size_t len;
  149. {
  150. op_t a0, a1, a2, a3;
  151. op_t b0, b1, b2, b3;
  152. op_t x;
  153. int shl, shr;
  154. /* Calculate how to shift a word read at the memory operation
  155. aligned srcp1 to make it aligned for comparison. */
  156. shl = 8 * (srcp1 % OPSIZ);
  157. shr = 8 * OPSIZ - shl;
  158. /* Make SRCP1 aligned by rounding it down to the beginning of the `op_t'
  159. it points in the middle of. */
  160. srcp1 &= -OPSIZ;
  161. switch (len % 4)
  162. {
  163. default: /* Avoid warning about uninitialized local variables. */
  164. case 2:
  165. a1 = ((op_t *) srcp1)[0];
  166. a2 = ((op_t *) srcp1)[1];
  167. b2 = ((op_t *) srcp2)[0];
  168. srcp1 -= 1 * OPSIZ;
  169. srcp2 -= 2 * OPSIZ;
  170. len += 2;
  171. goto do1;
  172. case 3:
  173. a0 = ((op_t *) srcp1)[0];
  174. a1 = ((op_t *) srcp1)[1];
  175. b1 = ((op_t *) srcp2)[0];
  176. srcp2 -= 1 * OPSIZ;
  177. len += 1;
  178. goto do2;
  179. case 0:
  180. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  181. return 0;
  182. a3 = ((op_t *) srcp1)[0];
  183. a0 = ((op_t *) srcp1)[1];
  184. b0 = ((op_t *) srcp2)[0];
  185. srcp1 += 1 * OPSIZ;
  186. goto do3;
  187. case 1:
  188. a2 = ((op_t *) srcp1)[0];
  189. a3 = ((op_t *) srcp1)[1];
  190. b3 = ((op_t *) srcp2)[0];
  191. srcp1 += 2 * OPSIZ;
  192. srcp2 += 1 * OPSIZ;
  193. len -= 1;
  194. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  195. goto do0;
  196. /* Fall through. */
  197. }
  198. do
  199. {
  200. a0 = ((op_t *) srcp1)[0];
  201. b0 = ((op_t *) srcp2)[0];
  202. x = MERGE(a2, shl, a3, shr);
  203. if (x != b3)
  204. return CMP_LT_OR_GT (x, b3);
  205. do3:
  206. a1 = ((op_t *) srcp1)[1];
  207. b1 = ((op_t *) srcp2)[1];
  208. x = MERGE(a3, shl, a0, shr);
  209. if (x != b0)
  210. return CMP_LT_OR_GT (x, b0);
  211. do2:
  212. a2 = ((op_t *) srcp1)[2];
  213. b2 = ((op_t *) srcp2)[2];
  214. x = MERGE(a0, shl, a1, shr);
  215. if (x != b1)
  216. return CMP_LT_OR_GT (x, b1);
  217. do1:
  218. a3 = ((op_t *) srcp1)[3];
  219. b3 = ((op_t *) srcp2)[3];
  220. x = MERGE(a1, shl, a2, shr);
  221. if (x != b2)
  222. return CMP_LT_OR_GT (x, b2);
  223. srcp1 += 4 * OPSIZ;
  224. srcp2 += 4 * OPSIZ;
  225. len -= 4;
  226. }
  227. while (len != 0);
  228. /* This is the right position for do0. Please don't move
  229. it into the loop. */
  230. do0:
  231. x = MERGE(a2, shl, a3, shr);
  232. if (x != b3)
  233. return CMP_LT_OR_GT (x, b3);
  234. return 0;
  235. }
  236. int
  237. attribute_hidden __memcmp (const __ptr_t s1, const __ptr_t s2, size_t len)
  238. {
  239. op_t a0;
  240. op_t b0;
  241. long int srcp1 = (long int) s1;
  242. long int srcp2 = (long int) s2;
  243. op_t res;
  244. if (len >= OP_T_THRES)
  245. {
  246. /* There are at least some bytes to compare. No need to test
  247. for LEN == 0 in this alignment loop. */
  248. while (srcp2 % OPSIZ != 0)
  249. {
  250. a0 = ((byte *) srcp1)[0];
  251. b0 = ((byte *) srcp2)[0];
  252. srcp1 += 1;
  253. srcp2 += 1;
  254. res = a0 - b0;
  255. if (res != 0)
  256. return res;
  257. len -= 1;
  258. }
  259. /* SRCP2 is now aligned for memory operations on `op_t'.
  260. SRCP1 alignment determines if we can do a simple,
  261. aligned compare or need to shuffle bits. */
  262. if (srcp1 % OPSIZ == 0)
  263. res = memcmp_common_alignment (srcp1, srcp2, len / OPSIZ);
  264. else
  265. res = memcmp_not_common_alignment (srcp1, srcp2, len / OPSIZ);
  266. if (res != 0)
  267. return res;
  268. /* Number of bytes remaining in the interval [0..OPSIZ-1]. */
  269. srcp1 += len & -OPSIZ;
  270. srcp2 += len & -OPSIZ;
  271. len %= OPSIZ;
  272. }
  273. /* There are just a few bytes to compare. Use byte memory operations. */
  274. while (len != 0)
  275. {
  276. a0 = ((byte *) srcp1)[0];
  277. b0 = ((byte *) srcp2)[0];
  278. srcp1 += 1;
  279. srcp2 += 1;
  280. res = a0 - b0;
  281. if (res != 0)
  282. return res;
  283. len -= 1;
  284. }
  285. return 0;
  286. }
  287. strong_alias(__memcmp,memcmp)
  288. strong_alias(__memcmp,bcmp)