123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- /* atanhl.c
- *
- * Inverse hyperbolic tangent, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, atanhl();
- *
- * y = atanhl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic tangent of argument in the range
- * MINLOGL to MAXLOGL.
- *
- * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
- * employed. Otherwise,
- * atanh(x) = 0.5 * log( (1+x)/(1-x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1,1 30000 1.1e-19 3.3e-20
- *
- */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright (C) 1987, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double P[] = {
- 2.9647757819596835680719E-3L,
- -8.0026596513099094380633E-1L,
- 7.7920941408493040219831E0L,
- -2.4330686602187898836837E1L,
- 3.0204265014595622991082E1L,
- -1.2961142942114056581210E1L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0L,*/
- -1.3729634163247557081869E1L,
- 6.2320841104088512332185E1L,
- -1.2469344457045341444078E2L,
- 1.1394285233959210574352E2L,
- -3.8883428826342169425890E1L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0x3aa2,0x036b,0xaf06,0xc24c,0x3ff6, XPD
- 0x528e,0x56e8,0x3af4,0xccde,0xbffe, XPD
- 0x9d89,0xc9a1,0xd5cf,0xf958,0x4001, XPD
- 0xa653,0x6cfa,0x3f04,0xc2a5,0xc003, XPD
- 0xc651,0x2b3d,0x55b2,0xf1a2,0x4003, XPD
- 0xd76d,0xf293,0xd76b,0xcf60,0xc002, XPD
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0xd1b9,0x5314,0x94df,0xdbac,0xc002, XPD
- 0x3caa,0x0517,0x8a92,0xf948,0x4004, XPD
- 0x535e,0xaf5f,0x0b2a,0xf963,0xc005, XPD
- 0xa6f9,0xb702,0xbd8a,0xe3e2,0x4005, XPD
- 0xe136,0xf5ee,0xa190,0x9b88,0xc004, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x3ff60000,0xc24caf06,0x036b3aa2,
- 0xbffe0000,0xccde3af4,0x56e8528e,
- 0x40010000,0xf958d5cf,0xc9a19d89,
- 0xc0030000,0xc2a53f04,0x6cfaa653,
- 0x40030000,0xf1a255b2,0x2b3dc651,
- 0xc0020000,0xcf60d76b,0xf293d76d,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0xc0020000,0xdbac94df,0x5314d1b9,
- 0x40040000,0xf9488a92,0x05173caa,
- 0xc0050000,0xf9630b2a,0xaf5f535e,
- 0x40050000,0xe3e2bd8a,0xb702a6f9,
- 0xc0040000,0x9b88a190,0xf5eee136,
- };
- #endif
- extern long double MAXNUML;
- #ifdef ANSIPROT
- extern long double fabsl ( long double );
- extern long double logl ( long double );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- #else
- long double fabsl(), logl(), polevll(), p1evll();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- long double atanhl(x)
- long double x;
- {
- long double s, z;
- #ifdef MINUSZERO
- if( x == 0.0L )
- return(x);
- #endif
- z = fabsl(x);
- if( z >= 1.0L )
- {
- if( x == 1.0L )
- {
- #ifdef INFINITIES
- return( INFINITYL );
- #else
- return( MAXNUML );
- #endif
- }
- if( x == -1.0L )
- {
- #ifdef INFINITIES
- return( -INFINITYL );
- #else
- return( -MAXNUML );
- #endif
- }
- mtherr( "atanhl", DOMAIN );
- #ifdef NANS
- return( NANL );
- #else
- return( MAXNUML );
- #endif
- }
- if( z < 1.0e-8L )
- return(x);
- if( z < 0.5L )
- {
- z = x * x;
- s = x + x * z * (polevll(z, P, 5) / p1evll(z, Q, 5));
- return(s);
- }
- return( 0.5L * logl((1.0L+x)/(1.0L-x)) );
- }
|