123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- /* atanl.c
- *
- * Inverse circular tangent, long double precision
- * (arctangent)
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, atanl();
- *
- * y = atanl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose tangent
- * is x.
- *
- * Range reduction is from four intervals into the interval
- * from zero to tan( pi/8 ). The approximant uses a rational
- * function of degree 3/4 of the form x + x**3 P(x)/Q(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 150000 1.3e-19 3.0e-20
- *
- */
- /* atan2l()
- *
- * Quadrant correct inverse circular tangent,
- * long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, z, atan2l();
- *
- * z = atan2l( y, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle whose tangent is y/x.
- * Define compile time symbol ANSIC = 1 for ANSI standard,
- * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
- * 0 to 2PI, args (x,y).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 60000 1.7e-19 3.2e-20
- * See atan.c.
- *
- */
- /* atan.c */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1984, 1990, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double P[] = {
- -8.6863818178092187535440E-1L,
- -1.4683508633175792446076E1L,
- -6.3976888655834347413154E1L,
- -9.9988763777265819915721E1L,
- -5.0894116899623603312185E1L,
- };
- static long double Q[] = {
- /* 1.00000000000000000000E0L,*/
- 2.2981886733594175366172E1L,
- 1.4399096122250781605352E2L,
- 3.6144079386152023162701E2L,
- 3.9157570175111990631099E2L,
- 1.5268235069887081006606E2L,
- };
- /* tan( 3*pi/8 ) */
- static long double T3P8 = 2.41421356237309504880169L;
- /* tan( pi/8 ) */
- static long double TP8 = 4.1421356237309504880169e-1L;
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x8ece,0xce53,0x1266,0xde5f,0xbffe, XPD
- 0x07e6,0xa061,0xa6bf,0xeaef,0xc002, XPD
- 0x53ee,0xf291,0x557f,0xffe8,0xc004, XPD
- 0xf9d6,0xeda6,0x3f3e,0xc7fa,0xc005, XPD
- 0xb6c3,0x6abc,0x9361,0xcb93,0xc004, XPD
- };
- static unsigned short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x54d4,0x894e,0xe76e,0xb7da,0x4003, XPD
- 0x76b9,0x7a46,0xafa2,0x8ffd,0x4006, XPD
- 0xe3a9,0xe9c0,0x6bee,0xb4b8,0x4007, XPD
- 0xabc1,0x50a7,0xb098,0xc3c9,0x4007, XPD
- 0x891c,0x100d,0xae89,0x98ae,0x4006, XPD
- };
- /* tan( 3*pi/8 ) = 2.41421356237309504880 */
- static unsigned short T3P8A[] = {0x3242,0xfcef,0x7999,0x9a82,0x4000, XPD};
- #define T3P8 *(long double *)T3P8A
- /* tan( pi/8 ) = 0.41421356237309504880 */
- static unsigned short TP8A[] = {0x9211,0xe779,0xcccf,0xd413,0x3ffd, XPD};
- #define TP8 *(long double *)TP8A
- #endif
- #ifdef MIEEE
- static unsigned long P[] = {
- 0xbffe0000,0xde5f1266,0xce538ece,
- 0xc0020000,0xeaefa6bf,0xa06107e6,
- 0xc0040000,0xffe8557f,0xf29153ee,
- 0xc0050000,0xc7fa3f3e,0xeda6f9d6,
- 0xc0040000,0xcb939361,0x6abcb6c3,
- };
- static unsigned long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40030000,0xb7dae76e,0x894e54d4,
- 0x40060000,0x8ffdafa2,0x7a4676b9,
- 0x40070000,0xb4b86bee,0xe9c0e3a9,
- 0x40070000,0xc3c9b098,0x50a7abc1,
- 0x40060000,0x98aeae89,0x100d891c,
- };
- /* tan( 3*pi/8 ) = 2.41421356237309504880 */
- static long T3P8A[] = {0x40000000,0x9a827999,0xfcef3242};
- #define T3P8 *(long double *)T3P8A
- /* tan( pi/8 ) = 0.41421356237309504880 */
- static long TP8A[] = {0x3ffd0000,0xd413cccf,0xe7799211};
- #define TP8 *(long double *)TP8A
- #endif
- #ifdef ANSIPROT
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern long double fabsl ( long double );
- extern int signbitl ( long double );
- extern int isnanl ( long double );
- long double atanl ( long double );
- #else
- long double polevll(), p1evll(), fabsl(), signbitl(), isnanl();
- long double atanl();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- #ifdef MINUSZERO
- extern long double NEGZEROL;
- #endif
- long double atanl(x)
- long double x;
- {
- extern long double PIO2L, PIO4L;
- long double y, z;
- short sign;
- #ifdef MINUSZERO
- if( x == 0.0L )
- return(x);
- #endif
- #ifdef INFINITIES
- if( x == INFINITYL )
- return( PIO2L );
- if( x == -INFINITYL )
- return( -PIO2L );
- #endif
- /* make argument positive and save the sign */
- sign = 1;
- if( x < 0.0L )
- {
- sign = -1;
- x = -x;
- }
- /* range reduction */
- if( x > T3P8 )
- {
- y = PIO2L;
- x = -( 1.0L/x );
- }
- else if( x > TP8 )
- {
- y = PIO4L;
- x = (x-1.0L)/(x+1.0L);
- }
- else
- y = 0.0L;
- /* rational form in x**2 */
- z = x * x;
- y = y + ( polevll( z, P, 4 ) / p1evll( z, Q, 5 ) ) * z * x + x;
- if( sign < 0 )
- y = -y;
- return(y);
- }
- /* atan2 */
- extern long double PIL, PIO2L, MAXNUML;
- #if ANSIC
- long double atan2l( y, x )
- #else
- long double atan2l( x, y )
- #endif
- long double x, y;
- {
- long double z, w;
- short code;
- code = 0;
- if( x < 0.0L )
- code = 2;
- if( y < 0.0L )
- code |= 1;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- if( isnanl(y) )
- return(y);
- #endif
- #ifdef MINUSZERO
- if( y == 0.0L )
- {
- if( signbitl(y) )
- {
- if( x > 0.0L )
- z = y;
- else if( x < 0.0L )
- z = -PIL;
- else
- {
- if( signbitl(x) )
- z = -PIL;
- else
- z = y;
- }
- }
- else /* y is +0 */
- {
- if( x == 0.0L )
- {
- if( signbitl(x) )
- z = PIL;
- else
- z = 0.0L;
- }
- else if( x > 0.0L )
- z = 0.0L;
- else
- z = PIL;
- }
- return z;
- }
- if( x == 0.0L )
- {
- if( y > 0.0L )
- z = PIO2L;
- else
- z = -PIO2L;
- return z;
- }
- #endif /* MINUSZERO */
- #ifdef INFINITIES
- if( x == INFINITYL )
- {
- if( y == INFINITYL )
- z = 0.25L * PIL;
- else if( y == -INFINITYL )
- z = -0.25L * PIL;
- else if( y < 0.0L )
- z = NEGZEROL;
- else
- z = 0.0L;
- return z;
- }
- if( x == -INFINITYL )
- {
- if( y == INFINITYL )
- z = 0.75L * PIL;
- else if( y == -INFINITYL )
- z = -0.75L * PIL;
- else if( y >= 0.0L )
- z = PIL;
- else
- z = -PIL;
- return z;
- }
- if( y == INFINITYL )
- return( PIO2L );
- if( y == -INFINITYL )
- return( -PIO2L );
- #endif /* INFINITIES */
- #ifdef INFINITIES
- if( x == 0.0L )
- #else
- if( fabsl(x) <= (fabsl(y) / MAXNUML) )
- #endif
- {
- if( code & 1 )
- {
- #if ANSIC
- return( -PIO2L );
- #else
- return( 3.0L*PIO2L );
- #endif
- }
- if( y == 0.0L )
- return( 0.0L );
- return( PIO2L );
- }
- if( y == 0.0L )
- {
- if( code & 2 )
- return( PIL );
- return( 0.0L );
- }
- switch( code )
- {
- default:
- #if ANSIC
- case 0:
- case 1: w = 0.0L; break;
- case 2: w = PIL; break;
- case 3: w = -PIL; break;
- #else
- case 0: w = 0.0L; break;
- case 1: w = 2.0L * PIL; break;
- case 2:
- case 3: w = PIL; break;
- #endif
- }
- z = w + atanl( y/x );
- #ifdef MINUSZERO
- if( z == 0.0L && y < 0.0L )
- z = NEGZEROL;
- #endif
- return( z );
- }
|