123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* ellikl.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * long double phi, m, y, ellikl();
- *
- * y = ellikl( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi_\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with m in [0, 1] and phi as indicated.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 30000 3.6e-18 4.1e-19
- *
- *
- */
- /*
- Cephes Math Library Release 2.3: November, 1995
- Copyright 1984, 1987, 1995 by Stephen L. Moshier
- */
- /* Incomplete elliptic integral of first kind */
- #include <math.h>
- #ifdef ANSIPROT
- extern long double sqrtl ( long double );
- extern long double fabsl ( long double );
- extern long double logl ( long double );
- extern long double tanl ( long double );
- extern long double atanl ( long double );
- extern long double floorl ( long double );
- extern long double ellpkl ( long double );
- long double ellikl ( long double, long double );
- #else
- long double sqrtl(), fabsl(), logl(), tanl(), atanl(), floorl(), ellpkl();
- long double ellikl();
- #endif
- extern long double PIL, PIO2L, MACHEPL, MAXNUML;
- long double ellikl( phi, m )
- long double phi, m;
- {
- long double a, b, c, e, temp, t, K;
- int d, mod, sign, npio2;
- if( m == 0.0L )
- return( phi );
- a = 1.0L - m;
- if( a == 0.0L )
- {
- if( fabsl(phi) >= PIO2L )
- {
- mtherr( "ellikl", SING );
- return( MAXNUML );
- }
- return( logl( tanl( 0.5L*(PIO2L + phi) ) ) );
- }
- npio2 = floorl( phi/PIO2L );
- if( npio2 & 1 )
- npio2 += 1;
- if( npio2 )
- {
- K = ellpkl( a );
- phi = phi - npio2 * PIO2L;
- }
- else
- K = 0.0L;
- if( phi < 0.0L )
- {
- phi = -phi;
- sign = -1;
- }
- else
- sign = 0;
- b = sqrtl(a);
- t = tanl( phi );
- if( fabsl(t) > 10.0L )
- {
- /* Transform the amplitude */
- e = 1.0L/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabsl(e) < 10.0L )
- {
- e = atanl(e);
- if( npio2 == 0 )
- K = ellpkl( a );
- temp = K - ellikl( e, m );
- goto done;
- }
- }
- a = 1.0L;
- c = sqrtl(m);
- d = 1;
- mod = 0;
- while( fabsl(c/a) > MACHEPL )
- {
- temp = b/a;
- phi = phi + atanl(t*temp) + mod * PIL;
- mod = (phi + PIO2L)/PIL;
- t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );
- c = 0.5L * ( a - b );
- temp = sqrtl( a * b );
- a = 0.5L * ( a + b );
- b = temp;
- d += d;
- }
- temp = (atanl(t) + mod * PIL)/(d * a);
- done:
- if( sign < 0 )
- temp = -temp;
- temp += npio2 * K;
- return( temp );
- }
|