123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- /* ellpkl.c
- *
- * Complete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * long double m1, y, ellpkl();
- *
- * y = ellpkl( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * pi/2
- * -
- * | |
- * | dt
- * K(m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * where m = 1 - m1, using the approximation
- *
- * P(x) - log x Q(x).
- *
- * The argument m1 is used rather than m so that the logarithmic
- * singularity at m = 1 will be shifted to the origin; this
- * preserves maximum accuracy.
- *
- * K(0) = pi/2.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1 10000 1.1e-19 3.3e-20
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpkl domain x<0, x>1 0.0
- *
- */
- /* ellpkl.c */
- /*
- Cephes Math Library, Release 2.3: October, 1995
- Copyright 1984, 1987, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- #if UNK
- static long double P[13] = {
- 1.247539729154838838628E-6L,
- 2.149421654232011240659E-4L,
- 2.265267575136470585139E-3L,
- 6.723088676584254248821E-3L,
- 8.092066790639263075808E-3L,
- 5.664069509748147028621E-3L,
- 4.579865994050801042865E-3L,
- 5.797368411662027645234E-3L,
- 8.767698209432225911803E-3L,
- 1.493761594388688915057E-2L,
- 3.088514457872042326871E-2L,
- 9.657359027999314232753E-2L,
- 1.386294361119890618992E0L,
- };
- static long double Q[12] = {
- 5.568631677757315398993E-5L,
- 1.036110372590318802997E-3L,
- 5.500459122138244213579E-3L,
- 1.337330436245904844528E-2L,
- 2.033103735656990487115E-2L,
- 2.522868345512332304268E-2L,
- 3.026786461242788135379E-2L,
- 3.738370118296930305919E-2L,
- 4.882812208418620146046E-2L,
- 7.031249999330222751046E-2L,
- 1.249999999999978263154E-1L,
- 4.999999999999999999924E-1L,
- };
- static long double C1 = 1.386294361119890618834L; /* log(4) */
- #endif
- #if IBMPC
- static short P[] = {
- 0xf098,0xad01,0x2381,0xa771,0x3feb, XPD
- 0xd6ed,0xea22,0x1922,0xe162,0x3ff2, XPD
- 0x3733,0xe2f1,0xe226,0x9474,0x3ff6, XPD
- 0x3031,0x3c9d,0x5aff,0xdc4d,0x3ff7, XPD
- 0x9a46,0x4310,0x968e,0x8494,0x3ff8, XPD
- 0xbe4c,0x3ff2,0xa8a7,0xb999,0x3ff7, XPD
- 0xf35c,0x0eaf,0xb355,0x9612,0x3ff7, XPD
- 0xbc56,0x8fd4,0xd9dd,0xbdf7,0x3ff7, XPD
- 0xc01e,0x867f,0x6444,0x8fa6,0x3ff8, XPD
- 0x4ba3,0x6392,0xe6fd,0xf4bc,0x3ff8, XPD
- 0x62c3,0xbb12,0xd7bc,0xfd02,0x3ff9, XPD
- 0x08fe,0x476c,0x5fdf,0xc5c8,0x3ffb, XPD
- 0x79ad,0xd1cf,0x17f7,0xb172,0x3fff, XPD
- };
- static short Q[] = {
- 0x96a4,0x8474,0xba33,0xe990,0x3ff0, XPD
- 0xe5a7,0xa50e,0x1854,0x87ce,0x3ff5, XPD
- 0x8999,0x72e3,0x3205,0xb43d,0x3ff7, XPD
- 0x3255,0x13eb,0xb438,0xdb1b,0x3ff8, XPD
- 0xb717,0x497f,0x4691,0xa68d,0x3ff9, XPD
- 0x30be,0x8c6b,0x624b,0xceac,0x3ff9, XPD
- 0xa858,0x2a0d,0x5014,0xf7f4,0x3ff9, XPD
- 0x8615,0xbfa6,0xa6df,0x991f,0x3ffa, XPD
- 0x103c,0xa076,0xff37,0xc7ff,0x3ffa, XPD
- 0xf508,0xc515,0xffff,0x8fff,0x3ffb, XPD
- 0x1af5,0xfffb,0xffff,0xffff,0x3ffb, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD
- };
- static unsigned short ac1[] = {
- 0x79ac,0xd1cf,0x17f7,0xb172,0x3fff, XPD
- };
- #define C1 (*(long double *)ac1)
- #endif
- #ifdef MIEEE
- static long P[39] = {
- 0x3feb0000,0xa7712381,0xad01f098,
- 0x3ff20000,0xe1621922,0xea22d6ed,
- 0x3ff60000,0x9474e226,0xe2f13733,
- 0x3ff70000,0xdc4d5aff,0x3c9d3031,
- 0x3ff80000,0x8494968e,0x43109a46,
- 0x3ff70000,0xb999a8a7,0x3ff2be4c,
- 0x3ff70000,0x9612b355,0x0eaff35c,
- 0x3ff70000,0xbdf7d9dd,0x8fd4bc56,
- 0x3ff80000,0x8fa66444,0x867fc01e,
- 0x3ff80000,0xf4bce6fd,0x63924ba3,
- 0x3ff90000,0xfd02d7bc,0xbb1262c3,
- 0x3ffb0000,0xc5c85fdf,0x476c08fe,
- 0x3fff0000,0xb17217f7,0xd1cf79ad,
- };
- static long Q[36] = {
- 0x3ff00000,0xe990ba33,0x847496a4,
- 0x3ff50000,0x87ce1854,0xa50ee5a7,
- 0x3ff70000,0xb43d3205,0x72e38999,
- 0x3ff80000,0xdb1bb438,0x13eb3255,
- 0x3ff90000,0xa68d4691,0x497fb717,
- 0x3ff90000,0xceac624b,0x8c6b30be,
- 0x3ff90000,0xf7f45014,0x2a0da858,
- 0x3ffa0000,0x991fa6df,0xbfa68615,
- 0x3ffa0000,0xc7ffff37,0xa076103c,
- 0x3ffb0000,0x8fffffff,0xc515f508,
- 0x3ffb0000,0xffffffff,0xfffb1af5,
- 0x3ffe0000,0x80000000,0x00000000,
- };
- static unsigned long ac1[] = {
- 0x3fff0000,0xb17217f7,0xd1cf79ac
- };
- #define C1 (*(long double *)ac1)
- #endif
- #ifdef ANSIPROT
- extern long double polevll ( long double, void *, int );
- extern long double logl ( long double );
- #else
- long double polevll(), logl();
- #endif
- extern long double MACHEPL, MAXNUML;
- long double ellpkl(x)
- long double x;
- {
- if( (x < 0.0L) || (x > 1.0L) )
- {
- mtherr( "ellpkl", DOMAIN );
- return( 0.0L );
- }
- if( x > MACHEPL )
- {
- return( polevll(x,P,12) - logl(x) * polevll(x,Q,11) );
- }
- else
- {
- if( x == 0.0L )
- {
- mtherr( "ellpkl", SING );
- return( MAXNUML );
- }
- else
- {
- return( C1 - 0.5L * logl(x) );
- }
- }
- }
|