123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- /* ndtril.c
- *
- * Inverse of Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, ndtril();
- *
- * x = ndtril( y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the argument, x, for which the area under the
- * Gaussian probability density function (integrated from
- * minus infinity to x) is equal to y.
- *
- *
- * For small arguments 0 < y < exp(-2), the program computes
- * z = sqrt( -2 log(y) ); then the approximation is
- * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z) .
- * For larger arguments, x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
- * where w = y - 0.5 .
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * Arguments uniformly distributed:
- * IEEE 0, 1 5000 7.8e-19 9.9e-20
- * Arguments exponentially distributed:
- * IEEE exp(-11355),-1 30000 1.7e-19 4.3e-20
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ndtril domain x <= 0 -MAXNUML
- * ndtril domain x >= 1 MAXNUML
- *
- */
- /*
- Cephes Math Library Release 2.3: January, 1995
- Copyright 1984, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- extern long double MAXNUML;
- /* ndtri(y+0.5)/sqrt(2 pi) = y + y^3 R(y^2)
- 0 <= y <= 3/8
- Peak relative error 6.8e-21. */
- #if UNK
- /* sqrt(2pi) */
- static long double s2pi = 2.506628274631000502416E0L;
- static long double P0[8] = {
- 8.779679420055069160496E-3L,
- -7.649544967784380691785E-1L,
- 2.971493676711545292135E0L,
- -4.144980036933753828858E0L,
- 2.765359913000830285937E0L,
- -9.570456817794268907847E-1L,
- 1.659219375097958322098E-1L,
- -1.140013969885358273307E-2L,
- };
- static long double Q0[7] = {
- /* 1.000000000000000000000E0L, */
- -5.303846964603721860329E0L,
- 9.908875375256718220854E0L,
- -9.031318655459381388888E0L,
- 4.496118508523213950686E0L,
- -1.250016921424819972516E0L,
- 1.823840725000038842075E-1L,
- -1.088633151006419263153E-2L,
- };
- #endif
- #if IBMPC
- static unsigned short s2p[] = {
- 0x2cb3,0xb138,0x98ff,0xa06c,0x4000, XPD
- };
- #define s2pi *(long double *)s2p
- static short P0[] = {
- 0xb006,0x9fc1,0xa4fe,0x8fd8,0x3ff8, XPD
- 0x6f8a,0x976e,0x0ed2,0xc3d4,0xbffe, XPD
- 0xf1f1,0x6fcc,0xf3d0,0xbe2c,0x4000, XPD
- 0xccfb,0xa681,0xad2c,0x84a3,0xc001, XPD
- 0x9a0d,0x0082,0xa825,0xb0fb,0x4000, XPD
- 0x13d1,0x054a,0xf220,0xf500,0xbffe, XPD
- 0xcee9,0x2c92,0x70bd,0xa9e7,0x3ffc, XPD
- 0x5fee,0x4a42,0xa6cb,0xbac7,0xbff8, XPD
- };
- static short Q0[] = {
- /* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
- 0x841e,0xfec7,0x1d44,0xa9b9,0xc001, XPD
- 0x97e6,0xcde0,0xc0e7,0x9e8a,0x4002, XPD
- 0x66f9,0x8f3e,0x47fd,0x9080,0xc002, XPD
- 0x212f,0x2185,0x33ec,0x8fe0,0x4001, XPD
- 0x8e73,0x7bac,0x8df2,0xa000,0xbfff, XPD
- 0xc143,0xcb94,0xe3ea,0xbac2,0x3ffc, XPD
- 0x25d9,0xc8f3,0x9573,0xb25c,0xbff8, XPD
- };
- #endif
- #if MIEEE
- static unsigned long s2p[] = {
- 0x40000000,0xa06c98ff,0xb1382cb3,
- };
- #define s2pi *(long double *)s2p
- static long P0[24] = {
- 0x3ff80000,0x8fd8a4fe,0x9fc1b006,
- 0xbffe0000,0xc3d40ed2,0x976e6f8a,
- 0x40000000,0xbe2cf3d0,0x6fccf1f1,
- 0xc0010000,0x84a3ad2c,0xa681ccfb,
- 0x40000000,0xb0fba825,0x00829a0d,
- 0xbffe0000,0xf500f220,0x054a13d1,
- 0x3ffc0000,0xa9e770bd,0x2c92cee9,
- 0xbff80000,0xbac7a6cb,0x4a425fee,
- };
- static long Q0[21] = {
- /* 0x3fff0000,0x80000000,0x00000000, */
- 0xc0010000,0xa9b91d44,0xfec7841e,
- 0x40020000,0x9e8ac0e7,0xcde097e6,
- 0xc0020000,0x908047fd,0x8f3e66f9,
- 0x40010000,0x8fe033ec,0x2185212f,
- 0xbfff0000,0xa0008df2,0x7bac8e73,
- 0x3ffc0000,0xbac2e3ea,0xcb94c143,
- 0xbff80000,0xb25c9573,0xc8f325d9,
- };
- #endif
- /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
- */
- /* ndtri(p) = z - ln(z)/z - 1/z P1(1/z)/Q1(1/z)
- z = sqrt(-2 ln(p))
- 2 <= z <= 8, i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- Peak relative error 5.3e-21 */
- #if UNK
- static long double P1[10] = {
- 4.302849750435552180717E0L,
- 4.360209451837096682600E1L,
- 9.454613328844768318162E1L,
- 9.336735653151873871756E1L,
- 5.305046472191852391737E1L,
- 1.775851836288460008093E1L,
- 3.640308340137013109859E0L,
- 3.691354900171224122390E-1L,
- 1.403530274998072987187E-2L,
- 1.377145111380960566197E-4L,
- };
- static long double Q1[9] = {
- /* 1.000000000000000000000E0L, */
- 2.001425109170530136741E1L,
- 7.079893963891488254284E1L,
- 8.033277265194672063478E1L,
- 5.034715121553662712917E1L,
- 1.779820137342627204153E1L,
- 3.845554944954699547539E0L,
- 3.993627390181238962857E-1L,
- 1.526870689522191191380E-2L,
- 1.498700676286675466900E-4L,
- };
- #endif
- #if IBMPC
- static short P1[] = {
- 0x6105,0xb71e,0xf1f5,0x89b0,0x4001, XPD
- 0x461d,0x2604,0x8b77,0xae68,0x4004, XPD
- 0x8b33,0x4a47,0x9ec8,0xbd17,0x4005, XPD
- 0xa0b2,0xc1b0,0x1627,0xbabc,0x4005, XPD
- 0x9901,0x28f7,0xad06,0xd433,0x4004, XPD
- 0xddcb,0x5009,0x7213,0x8e11,0x4003, XPD
- 0x2432,0x0fa6,0xcfd5,0xe8fa,0x4000, XPD
- 0x3e24,0xd53c,0x53b2,0xbcff,0x3ffd, XPD
- 0x4058,0x3d75,0x5393,0xe5f4,0x3ff8, XPD
- 0x1789,0xf50a,0x7524,0x9067,0x3ff2, XPD
- };
- static short Q1[] = {
- /* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
- 0xd901,0x2673,0x2fad,0xa01d,0x4003, XPD
- 0x24f5,0xc93c,0x0e9d,0x8d99,0x4005, XPD
- 0x8cda,0x523a,0x612d,0xa0aa,0x4005, XPD
- 0x602c,0xb5fc,0x7b9b,0xc963,0x4004, XPD
- 0xac72,0xd3e7,0xb766,0x8e62,0x4003, XPD
- 0x048e,0xe34c,0x927c,0xf61d,0x4000, XPD
- 0x6d88,0xa5cc,0x45de,0xcc79,0x3ffd, XPD
- 0xe6d1,0x199a,0x9931,0xfa29,0x3ff8, XPD
- 0x4c7d,0x3675,0x70a0,0x9d26,0x3ff2, XPD
- };
- #endif
- #if MIEEE
- static long P1[30] = {
- 0x40010000,0x89b0f1f5,0xb71e6105,
- 0x40040000,0xae688b77,0x2604461d,
- 0x40050000,0xbd179ec8,0x4a478b33,
- 0x40050000,0xbabc1627,0xc1b0a0b2,
- 0x40040000,0xd433ad06,0x28f79901,
- 0x40030000,0x8e117213,0x5009ddcb,
- 0x40000000,0xe8facfd5,0x0fa62432,
- 0x3ffd0000,0xbcff53b2,0xd53c3e24,
- 0x3ff80000,0xe5f45393,0x3d754058,
- 0x3ff20000,0x90677524,0xf50a1789,
- };
- static long Q1[27] = {
- /* 0x3fff0000,0x80000000,0x00000000, */
- 0x40030000,0xa01d2fad,0x2673d901,
- 0x40050000,0x8d990e9d,0xc93c24f5,
- 0x40050000,0xa0aa612d,0x523a8cda,
- 0x40040000,0xc9637b9b,0xb5fc602c,
- 0x40030000,0x8e62b766,0xd3e7ac72,
- 0x40000000,0xf61d927c,0xe34c048e,
- 0x3ffd0000,0xcc7945de,0xa5cc6d88,
- 0x3ff80000,0xfa299931,0x199ae6d1,
- 0x3ff20000,0x9d2670a0,0x36754c7d,
- };
- #endif
- /* ndtri(x) = z - ln(z)/z - 1/z P2(1/z)/Q2(1/z)
- z = sqrt(-2 ln(y))
- 8 <= z <= 32
- i.e., y between exp(-32) = 1.27e-14 and exp(-512) = 4.38e-223
- Peak relative error 1.0e-21 */
- #if UNK
- static long double P2[8] = {
- 3.244525725312906932464E0L,
- 6.856256488128415760904E0L,
- 3.765479340423144482796E0L,
- 1.240893301734538935324E0L,
- 1.740282292791367834724E-1L,
- 9.082834200993107441750E-3L,
- 1.617870121822776093899E-4L,
- 7.377405643054504178605E-7L,
- };
- static long double Q2[7] = {
- /* 1.000000000000000000000E0L, */
- 6.021509481727510630722E0L,
- 3.528463857156936773982E0L,
- 1.289185315656302878699E0L,
- 1.874290142615703609510E-1L,
- 9.867655920899636109122E-3L,
- 1.760452434084258930442E-4L,
- 8.028288500688538331773E-7L,
- };
- #endif
- #if IBMPC
- static short P2[] = {
- 0xafb1,0x4ff9,0x4f3a,0xcfa6,0x4000, XPD
- 0xbd81,0xaffa,0x7401,0xdb66,0x4001, XPD
- 0x3a32,0x3863,0x9d0f,0xf0fd,0x4000, XPD
- 0x300e,0x633d,0x977a,0x9ed5,0x3fff, XPD
- 0xea3a,0x56b6,0x74c5,0xb234,0x3ffc, XPD
- 0x38c6,0x49d2,0x2af6,0x94d0,0x3ff8, XPD
- 0xc85d,0xe17d,0x5ed1,0xa9a5,0x3ff2, XPD
- 0x536c,0x808b,0x2542,0xc609,0x3fea, XPD
- };
- static short Q2[] = {
- /* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
- 0xaabd,0x125a,0x34a7,0xc0b0,0x4001, XPD
- 0x0ded,0xe6da,0x5a11,0xe1d2,0x4000, XPD
- 0xc742,0x9d16,0x0640,0xa504,0x3fff, XPD
- 0xea1e,0x4cc2,0x643a,0xbfed,0x3ffc, XPD
- 0x7a9b,0xfaff,0xf2dd,0xa1ab,0x3ff8, XPD
- 0xfd90,0x4688,0xc902,0xb898,0x3ff2, XPD
- 0xf003,0x032a,0xfa7e,0xd781,0x3fea, XPD
- };
- #endif
- #if MIEEE
- static long P2[24] = {
- 0x40000000,0xcfa64f3a,0x4ff9afb1,
- 0x40010000,0xdb667401,0xaffabd81,
- 0x40000000,0xf0fd9d0f,0x38633a32,
- 0x3fff0000,0x9ed5977a,0x633d300e,
- 0x3ffc0000,0xb23474c5,0x56b6ea3a,
- 0x3ff80000,0x94d02af6,0x49d238c6,
- 0x3ff20000,0xa9a55ed1,0xe17dc85d,
- 0x3fea0000,0xc6092542,0x808b536c,
- };
- static long Q2[21] = {
- /* 0x3fff0000,0x80000000,0x00000000, */
- 0x40010000,0xc0b034a7,0x125aaabd,
- 0x40000000,0xe1d25a11,0xe6da0ded,
- 0x3fff0000,0xa5040640,0x9d16c742,
- 0x3ffc0000,0xbfed643a,0x4cc2ea1e,
- 0x3ff80000,0xa1abf2dd,0xfaff7a9b,
- 0x3ff20000,0xb898c902,0x4688fd90,
- 0x3fea0000,0xd781fa7e,0x032af003,
- };
- #endif
- /* ndtri(x) = z - ln(z)/z - 1/z P3(1/z)/Q3(1/z)
- 32 < z < 2048/13
- Peak relative error 1.4e-20 */
- #if UNK
- static long double P3[8] = {
- 2.020331091302772535752E0L,
- 2.133020661587413053144E0L,
- 2.114822217898707063183E-1L,
- -6.500909615246067985872E-3L,
- -7.279315200737344309241E-4L,
- -1.275404675610280787619E-5L,
- -6.433966387613344714022E-8L,
- -7.772828380948163386917E-11L,
- };
- static long double Q3[7] = {
- /* 1.000000000000000000000E0L, */
- 2.278210997153449199574E0L,
- 2.345321838870438196534E-1L,
- -6.916708899719964982855E-3L,
- -7.908542088737858288849E-4L,
- -1.387652389480217178984E-5L,
- -7.001476867559193780666E-8L,
- -8.458494263787680376729E-11L,
- };
- #endif
- #if IBMPC
- static short P3[] = {
- 0x87b2,0x0f31,0x1ac7,0x814d,0x4000, XPD
- 0x491c,0xcd74,0x6917,0x8883,0x4000, XPD
- 0x935e,0x1776,0xcba9,0xd88e,0x3ffc, XPD
- 0xbafd,0x8abb,0x9518,0xd505,0xbff7, XPD
- 0xc87e,0x2ed3,0xa84a,0xbed2,0xbff4, XPD
- 0x0094,0xa402,0x36b5,0xd5fa,0xbfee, XPD
- 0xbc53,0x0fc3,0x1ab2,0x8a2b,0xbfe7, XPD
- 0x30b4,0x71c0,0x223d,0xaaed,0xbfdd, XPD
- };
- static short Q3[] = {
- /* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
- 0xdfc1,0x8a57,0x357f,0x91ce,0x4000, XPD
- 0xcc4f,0x9e03,0x346e,0xf029,0x3ffc, XPD
- 0x38b1,0x9788,0x8f42,0xe2a5,0xbff7, XPD
- 0xb281,0x2117,0x53da,0xcf51,0xbff4, XPD
- 0xf2ab,0x1d42,0x3760,0xe8cf,0xbfee, XPD
- 0x741b,0xf14f,0x06b0,0x965b,0xbfe7, XPD
- 0x37c2,0xa91f,0x16ea,0xba01,0xbfdd, XPD
- };
- #endif
- #if MIEEE
- static long P3[24] = {
- 0x40000000,0x814d1ac7,0x0f3187b2,
- 0x40000000,0x88836917,0xcd74491c,
- 0x3ffc0000,0xd88ecba9,0x1776935e,
- 0xbff70000,0xd5059518,0x8abbbafd,
- 0xbff40000,0xbed2a84a,0x2ed3c87e,
- 0xbfee0000,0xd5fa36b5,0xa4020094,
- 0xbfe70000,0x8a2b1ab2,0x0fc3bc53,
- 0xbfdd0000,0xaaed223d,0x71c030b4,
- };
- static long Q3[21] = {
- /* 0x3fff0000,0x80000000,0x00000000, */
- 0x40000000,0x91ce357f,0x8a57dfc1,
- 0x3ffc0000,0xf029346e,0x9e03cc4f,
- 0xbff70000,0xe2a58f42,0x978838b1,
- 0xbff40000,0xcf5153da,0x2117b281,
- 0xbfee0000,0xe8cf3760,0x1d42f2ab,
- 0xbfe70000,0x965b06b0,0xf14f741b,
- 0xbfdd0000,0xba0116ea,0xa91f37c2,
- };
- #endif
- #ifdef ANSIPROT
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern long double logl ( long double );
- extern long double sqrtl ( long double );
- #else
- long double polevll(), p1evll(), logl(), sqrtl();
- #endif
- long double ndtril(y0)
- long double y0;
- {
- long double x, y, z, y2, x0, x1;
- int code;
- if( y0 <= 0.0L )
- {
- mtherr( "ndtril", DOMAIN );
- return( -MAXNUML );
- }
- if( y0 >= 1.0L )
- {
- mtherr( "ndtri", DOMAIN );
- return( MAXNUML );
- }
- code = 1;
- y = y0;
- if( y > (1.0L - 0.13533528323661269189L) ) /* 0.135... = exp(-2) */
- {
- y = 1.0L - y;
- code = 0;
- }
- if( y > 0.13533528323661269189L )
- {
- y = y - 0.5L;
- y2 = y * y;
- x = y + y * (y2 * polevll( y2, P0, 7 )/p1evll( y2, Q0, 7 ));
- x = x * s2pi;
- return(x);
- }
- x = sqrtl( -2.0L * logl(y) );
- x0 = x - logl(x)/x;
- z = 1.0L/x;
- if( x < 8.0L )
- x1 = z * polevll( z, P1, 9 )/p1evll( z, Q1, 9 );
- else if( x < 32.0L )
- x1 = z * polevll( z, P2, 7 )/p1evll( z, Q2, 7 );
- else
- x1 = z * polevll( z, P3, 7 )/p1evll( z, Q3, 7 );
- x = x0 - x1;
- if( code != 0 )
- x = -x;
- return( x );
- }
|