123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- /* sinhl.c
- *
- * Hyperbolic sine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, sinhl();
- *
- * y = sinhl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic sine of argument in the range MINLOGL to
- * MAXLOGL.
- *
- * The range is partitioned into two segments. If |x| <= 1, a
- * rational function of the form x + x**3 P(x)/Q(x) is employed.
- * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -2,2 10000 1.5e-19 3.9e-20
- * IEEE +-10000 30000 1.1e-19 2.8e-20
- *
- */
- /*
- Cephes Math Library Release 2.7: January, 1998
- Copyright 1984, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double P[] = {
- 1.7550769032975377032681E-6L,
- 4.1680702175874268714539E-4L,
- 3.0993532520425419002409E-2L,
- 9.9999999999999999998002E-1L,
- };
- static long double Q[] = {
- 1.7453965448620151484660E-8L,
- -5.9116673682651952419571E-6L,
- 1.0599252315677389339530E-3L,
- -1.1403880487744749056675E-1L,
- 6.0000000000000000000200E0L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0xec6a,0xd942,0xfbb3,0xeb8f,0x3feb, XPD
- 0x365e,0xb30a,0xe437,0xda86,0x3ff3, XPD
- 0x8890,0x01f6,0x2612,0xfde6,0x3ff9, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
- };
- static short Q[] = {
- 0x4edd,0x4c21,0xad09,0x95ed,0x3fe5, XPD
- 0x4376,0x9b70,0xd605,0xc65c,0xbfed, XPD
- 0xc8ad,0x5d21,0x3069,0x8aed,0x3ff5, XPD
- 0x9c32,0x6374,0x2d4b,0xe98d,0xbffb, XPD
- 0x0000,0x0000,0x0000,0xc000,0x4001, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x3feb0000,0xeb8ffbb3,0xd942ec6a,
- 0x3ff30000,0xda86e437,0xb30a365e,
- 0x3ff90000,0xfde62612,0x01f68890,
- 0x3fff0000,0x80000000,0x00000000,
- };
- static long Q[] = {
- 0x3fe50000,0x95edad09,0x4c214edd,
- 0xbfed0000,0xc65cd605,0x9b704376,
- 0x3ff50000,0x8aed3069,0x5d21c8ad,
- 0xbffb0000,0xe98d2d4b,0x63749c32,
- 0x40010000,0xc0000000,0x00000000,
- };
- #endif
- extern long double MAXNUML, MAXLOGL, MINLOGL, LOGE2L;
- #ifdef ANSIPROT
- extern long double fabsl ( long double );
- extern long double expl ( long double );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- #else
- long double fabsl(), expl(), polevll(), p1evll();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- long double sinhl(x)
- long double x;
- {
- long double a;
- #ifdef MINUSZERO
- if( x == 0.0 )
- return(x);
- #endif
- a = fabsl(x);
- if( (x > (MAXLOGL + LOGE2L)) || (x > -(MINLOGL-LOGE2L) ) )
- {
- mtherr( "sinhl", DOMAIN );
- #ifdef INFINITIES
- if( x > 0.0L )
- return( INFINITYL );
- else
- return( -INFINITYL );
- #else
- if( x > 0.0L )
- return( MAXNUML );
- else
- return( -MAXNUML );
- #endif
- }
- if( a > 1.0L )
- {
- if( a >= (MAXLOGL - LOGE2L) )
- {
- a = expl(0.5L*a);
- a = (0.5L * a) * a;
- if( x < 0.0L )
- a = -a;
- return(a);
- }
- a = expl(a);
- a = 0.5L*a - (0.5L/a);
- if( x < 0.0L )
- a = -a;
- return(a);
- }
- a *= a;
- return( x + x * a * (polevll(a,P,3)/polevll(a,Q,4)) );
- }
|