sha512.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. /* Functions to compute SHA512 message digest of files or memory blocks.
  2. according to the definition of SHA512 in FIPS 180-2.
  3. Copyright (C) 2007 Free Software Foundation, Inc.
  4. This file is part of the GNU C Library.
  5. The GNU C Library is free software; you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public
  7. License as published by the Free Software Foundation; either
  8. version 2.1 of the License, or (at your option) any later version.
  9. The GNU C Library is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. Lesser General Public License for more details.
  13. You should have received a copy of the GNU Lesser General Public
  14. License along with the GNU C Library; if not, see
  15. <http://www.gnu.org/licenses/>. */
  16. /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
  17. #ifdef HAVE_CONFIG_H
  18. # include <config.h>
  19. #endif
  20. #include <endian.h>
  21. #include <stdlib.h>
  22. #include <string.h>
  23. #include <sys/types.h>
  24. #include "sha512.h"
  25. #if __BYTE_ORDER == __LITTLE_ENDIAN
  26. # ifdef _LIBC
  27. # include <byteswap.h>
  28. # define SWAP(n) bswap_64 (n)
  29. # else
  30. # define SWAP(n) \
  31. (((n) << 56) \
  32. | (((n) & 0xff00) << 40) \
  33. | (((n) & 0xff0000) << 24) \
  34. | (((n) & 0xff000000) << 8) \
  35. | (((n) >> 8) & 0xff000000) \
  36. | (((n) >> 24) & 0xff0000) \
  37. | (((n) >> 40) & 0xff00) \
  38. | ((n) >> 56))
  39. # endif
  40. #else
  41. # define SWAP(n) (n)
  42. #endif
  43. /* This array contains the bytes used to pad the buffer to the next
  44. 64-byte boundary. (FIPS 180-2:5.1.2) */
  45. static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
  46. /* Constants for SHA512 from FIPS 180-2:4.2.3. */
  47. static const uint64_t K[80] =
  48. {
  49. UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
  50. UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
  51. UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
  52. UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
  53. UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
  54. UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
  55. UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
  56. UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
  57. UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
  58. UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
  59. UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
  60. UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
  61. UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
  62. UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
  63. UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
  64. UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
  65. UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
  66. UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
  67. UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
  68. UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
  69. UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
  70. UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
  71. UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
  72. UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
  73. UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
  74. UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
  75. UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
  76. UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
  77. UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
  78. UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
  79. UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
  80. UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
  81. UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
  82. UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
  83. UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
  84. UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
  85. UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
  86. UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
  87. UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
  88. UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
  89. };
  90. /* Process LEN bytes of BUFFER, accumulating context into CTX.
  91. It is assumed that LEN % 128 == 0. */
  92. static void
  93. sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
  94. {
  95. const uint64_t *words = buffer;
  96. size_t nwords = len / sizeof (uint64_t);
  97. uint64_t a = ctx->H[0];
  98. uint64_t b = ctx->H[1];
  99. uint64_t c = ctx->H[2];
  100. uint64_t d = ctx->H[3];
  101. uint64_t e = ctx->H[4];
  102. uint64_t f = ctx->H[5];
  103. uint64_t g = ctx->H[6];
  104. uint64_t h = ctx->H[7];
  105. /* First increment the byte count. FIPS 180-2 specifies the possible
  106. length of the file up to 2^128 bits. Here we only compute the
  107. number of bytes. Do a double word increment. */
  108. ctx->total[0] += len;
  109. if (ctx->total[0] < len)
  110. ++ctx->total[1];
  111. /* Process all bytes in the buffer with 128 bytes in each round of
  112. the loop. */
  113. while (nwords > 0)
  114. {
  115. uint64_t W[80];
  116. uint64_t a_save = a;
  117. uint64_t b_save = b;
  118. uint64_t c_save = c;
  119. uint64_t d_save = d;
  120. uint64_t e_save = e;
  121. uint64_t f_save = f;
  122. uint64_t g_save = g;
  123. uint64_t h_save = h;
  124. /* Operators defined in FIPS 180-2:4.1.2. */
  125. #define _Ch(x, y, z) ((x & y) ^ (~x & z))
  126. #define _Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
  127. #define _S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
  128. #define _S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
  129. #define _R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
  130. #define _R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
  131. /* It is unfortunate that C does not provide an operator for
  132. cyclic rotation. Hope the C compiler is smart enough. */
  133. #define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
  134. /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
  135. for (unsigned int t = 0; t < 16; ++t)
  136. {
  137. W[t] = SWAP (*words);
  138. ++words;
  139. }
  140. for (unsigned int t = 16; t < 80; ++t)
  141. W[t] = _R1 (W[t - 2]) + W[t - 7] + _R0 (W[t - 15]) + W[t - 16];
  142. /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
  143. for (unsigned int t = 0; t < 80; ++t)
  144. {
  145. uint64_t T1 = h + _S1 (e) + _Ch (e, f, g) + K[t] + W[t];
  146. uint64_t T2 = _S0 (a) + _Maj (a, b, c);
  147. h = g;
  148. g = f;
  149. f = e;
  150. e = d + T1;
  151. d = c;
  152. c = b;
  153. b = a;
  154. a = T1 + T2;
  155. }
  156. /* Add the starting values of the context according to FIPS 180-2:6.3.2
  157. step 4. */
  158. a += a_save;
  159. b += b_save;
  160. c += c_save;
  161. d += d_save;
  162. e += e_save;
  163. f += f_save;
  164. g += g_save;
  165. h += h_save;
  166. /* Prepare for the next round. */
  167. nwords -= 16;
  168. }
  169. /* Put checksum in context given as argument. */
  170. ctx->H[0] = a;
  171. ctx->H[1] = b;
  172. ctx->H[2] = c;
  173. ctx->H[3] = d;
  174. ctx->H[4] = e;
  175. ctx->H[5] = f;
  176. ctx->H[6] = g;
  177. ctx->H[7] = h;
  178. }
  179. /* Initialize structure containing state of computation.
  180. (FIPS 180-2:5.3.3) */
  181. void
  182. __sha512_init_ctx (struct sha512_ctx *ctx)
  183. {
  184. ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);
  185. ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);
  186. ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);
  187. ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);
  188. ctx->H[4] = UINT64_C (0x510e527fade682d1);
  189. ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);
  190. ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);
  191. ctx->H[7] = UINT64_C (0x5be0cd19137e2179);
  192. ctx->total[0] = ctx->total[1] = 0;
  193. ctx->buflen = 0;
  194. }
  195. /* Process the remaining bytes in the internal buffer and the usual
  196. prolog according to the standard and write the result to RESBUF.
  197. IMPORTANT: On some systems it is required that RESBUF is correctly
  198. aligned for a 32 bits value. */
  199. void *
  200. __sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
  201. {
  202. /* Take yet unprocessed bytes into account. */
  203. uint64_t bytes = ctx->buflen;
  204. size_t pad;
  205. /* Now count remaining bytes. */
  206. ctx->total[0] += bytes;
  207. if (ctx->total[0] < bytes)
  208. ++ctx->total[1];
  209. pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
  210. memcpy (&ctx->buffer[bytes], fillbuf, pad);
  211. /* Put the 128-bit file length in *bits* at the end of the buffer. */
  212. *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3);
  213. *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
  214. (ctx->total[0] >> 61));
  215. /* Process last bytes. */
  216. sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);
  217. /* Put result from CTX in first 64 bytes following RESBUF. */
  218. for (unsigned int i = 0; i < 8; ++i)
  219. ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]);
  220. return resbuf;
  221. }
  222. void
  223. __sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
  224. {
  225. /* When we already have some bits in our internal buffer concatenate
  226. both inputs first. */
  227. if (ctx->buflen != 0)
  228. {
  229. size_t left_over = ctx->buflen;
  230. size_t add = 256 - left_over > len ? len : 256 - left_over;
  231. memcpy (&ctx->buffer[left_over], buffer, add);
  232. ctx->buflen += add;
  233. if (ctx->buflen > 128)
  234. {
  235. sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
  236. ctx->buflen &= 127;
  237. /* The regions in the following copy operation cannot overlap. */
  238. memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127],
  239. ctx->buflen);
  240. }
  241. buffer = (const char *) buffer + add;
  242. len -= add;
  243. }
  244. /* Process available complete blocks. */
  245. if (len >= 128)
  246. {
  247. #if __GNUC__ >= 2
  248. # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
  249. #else
  250. # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
  251. #endif
  252. if (UNALIGNED_P (buffer))
  253. while (len > 128)
  254. {
  255. sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128,
  256. ctx);
  257. buffer = (const char *) buffer + 128;
  258. len -= 128;
  259. }
  260. else
  261. {
  262. sha512_process_block (buffer, len & ~127, ctx);
  263. buffer = (const char *) buffer + (len & ~127);
  264. len &= 127;
  265. }
  266. }
  267. /* Move remaining bytes into internal buffer. */
  268. if (len > 0)
  269. {
  270. size_t left_over = ctx->buflen;
  271. memcpy (&ctx->buffer[left_over], buffer, len);
  272. left_over += len;
  273. if (left_over >= 128)
  274. {
  275. sha512_process_block (ctx->buffer, 128, ctx);
  276. left_over -= 128;
  277. memcpy (ctx->buffer, &ctx->buffer[128], left_over);
  278. }
  279. ctx->buflen = left_over;
  280. }
  281. }