12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /* __ieee754_acos(x)
- * Method :
- * acos(x) = pi/2 - asin(x)
- * acos(-x) = pi/2 + asin(x)
- * For |x|<=0.5
- * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
- * For x>0.5
- * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
- * = 2asin(sqrt((1-x)/2))
- * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
- * = 2f + (2c + 2s*z*R(z))
- * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
- * for f so that f+c ~ sqrt(z).
- * For x<-0.5
- * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
- * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
- *
- * Special cases:
- * if x is NaN, return x itself;
- * if |x|>1, return NaN with invalid signal.
- *
- * Function needed: __ieee754_sqrt
- */
- #include "math.h"
- #include "math_private.h"
- static const double
- one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
- pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
- pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
- pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
- pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
- pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
- pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
- pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
- pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
- pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
- qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
- qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
- qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
- qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
- double __ieee754_acos(double x)
- {
- double z,p,q,r,w,s,c,df;
- int32_t hx,ix;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x3ff00000) { /* |x| >= 1 */
- u_int32_t lx;
- GET_LOW_WORD(lx,x);
- if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
- if(hx>0) return 0.0; /* acos(1) = 0 */
- else return pi+2.0*pio2_lo; /* acos(-1)= pi */
- }
- return (x-x)/(x-x); /* acos(|x|>1) is NaN */
- }
- if(ix<0x3fe00000) { /* |x| < 0.5 */
- if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
- z = x*x;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- return pio2_hi - (x - (pio2_lo-x*r));
- } else if (hx<0) { /* x < -0.5 */
- z = (one+x)*0.5;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- s = __ieee754_sqrt(z);
- r = p/q;
- w = r*s-pio2_lo;
- return pi - 2.0*(s+w);
- } else { /* x > 0.5 */
- z = (one-x)*0.5;
- s = __ieee754_sqrt(z);
- df = s;
- SET_LOW_WORD(df,0);
- c = (z-df*df)/(s+df);
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- w = r*s+c;
- return 2.0*(df+w);
- }
- }
|