s_log1p.c 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /*
  2. * ====================================================
  3. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  4. *
  5. * Developed at SunPro, a Sun Microsystems, Inc. business.
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* double log1p(double x)
  12. *
  13. * Method :
  14. * 1. Argument Reduction: find k and f such that
  15. * 1+x = 2^k * (1+f),
  16. * where sqrt(2)/2 < 1+f < sqrt(2) .
  17. *
  18. * Note. If k=0, then f=x is exact. However, if k!=0, then f
  19. * may not be representable exactly. In that case, a correction
  20. * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
  21. * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
  22. * and add back the correction term c/u.
  23. * (Note: when x > 2**53, one can simply return log(x))
  24. *
  25. * 2. Approximation of log1p(f).
  26. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  27. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  28. * = 2s + s*R
  29. * We use a special Reme algorithm on [0,0.1716] to generate
  30. * a polynomial of degree 14 to approximate R The maximum error
  31. * of this polynomial approximation is bounded by 2**-58.45. In
  32. * other words,
  33. * 2 4 6 8 10 12 14
  34. * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
  35. * (the values of Lp1 to Lp7 are listed in the program)
  36. * and
  37. * | 2 14 | -58.45
  38. * | Lp1*s +...+Lp7*s - R(z) | <= 2
  39. * | |
  40. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  41. * In order to guarantee error in log below 1ulp, we compute log
  42. * by
  43. * log1p(f) = f - (hfsq - s*(hfsq+R)).
  44. *
  45. * 3. Finally, log1p(x) = k*ln2 + log1p(f).
  46. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  47. * Here ln2 is split into two floating point number:
  48. * ln2_hi + ln2_lo,
  49. * where n*ln2_hi is always exact for |n| < 2000.
  50. *
  51. * Special cases:
  52. * log1p(x) is NaN with signal if x < -1 (including -INF) ;
  53. * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
  54. * log1p(NaN) is that NaN with no signal.
  55. *
  56. * Accuracy:
  57. * according to an error analysis, the error is always less than
  58. * 1 ulp (unit in the last place).
  59. *
  60. * Constants:
  61. * The hexadecimal values are the intended ones for the following
  62. * constants. The decimal values may be used, provided that the
  63. * compiler will convert from decimal to binary accurately enough
  64. * to produce the hexadecimal values shown.
  65. *
  66. * Note: Assuming log() return accurate answer, the following
  67. * algorithm can be used to compute log1p(x) to within a few ULP:
  68. *
  69. * u = 1+x;
  70. * if(u==1.0) return x ; else
  71. * return log(u)*(x/(u-1.0));
  72. *
  73. * See HP-15C Advanced Functions Handbook, p.193.
  74. */
  75. #include "math.h"
  76. #include "math_private.h"
  77. static const double
  78. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  79. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  80. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  81. Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  82. Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  83. Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  84. Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  85. Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  86. Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  87. Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  88. static const double zero = 0.0;
  89. double log1p(double x)
  90. {
  91. double hfsq,f=0,c=0,s,z,R,u;
  92. int32_t k,hx,hu=0,ax;
  93. GET_HIGH_WORD(hx,x);
  94. ax = hx&0x7fffffff;
  95. k = 1;
  96. if (hx < 0x3FDA827A) { /* x < 0.41422 */
  97. if(ax>=0x3ff00000) { /* x <= -1.0 */
  98. if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
  99. else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
  100. }
  101. if(ax<0x3e200000) { /* |x| < 2**-29 */
  102. if(two54+x>zero /* raise inexact */
  103. &&ax<0x3c900000) /* |x| < 2**-54 */
  104. return x;
  105. else
  106. return x - x*x*0.5;
  107. }
  108. if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
  109. k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
  110. }
  111. if (hx >= 0x7ff00000) return x+x;
  112. if(k!=0) {
  113. if(hx<0x43400000) {
  114. u = 1.0+x;
  115. GET_HIGH_WORD(hu,u);
  116. k = (hu>>20)-1023;
  117. c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
  118. c /= u;
  119. } else {
  120. u = x;
  121. GET_HIGH_WORD(hu,u);
  122. k = (hu>>20)-1023;
  123. c = 0;
  124. }
  125. hu &= 0x000fffff;
  126. if(hu<0x6a09e) {
  127. SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
  128. } else {
  129. k += 1;
  130. SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
  131. hu = (0x00100000-hu)>>2;
  132. }
  133. f = u-1.0;
  134. }
  135. hfsq=0.5*f*f;
  136. if(hu==0) { /* |f| < 2**-20 */
  137. if(f==zero) {if(k==0) return zero;
  138. else {c += k*ln2_lo; return k*ln2_hi+c;}
  139. }
  140. R = hfsq*(1.0-0.66666666666666666*f);
  141. if(k==0) return f-R; else
  142. return k*ln2_hi-((R-(k*ln2_lo+c))-f);
  143. }
  144. s = f/(2.0+f);
  145. z = s*s;
  146. R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
  147. if(k==0) return f-(hfsq-s*(hfsq+R)); else
  148. return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
  149. }
  150. libm_hidden_def(log1p)