Browse Source

Fill a few little holes in the math library

Eric Andersen 22 years ago
parent
commit
3942feca80
6 changed files with 747 additions and 46 deletions
  1. 107 0
      include/complex.h
  2. 98 0
      include/fpu_control.h
  3. 430 0
      include/tgmath.h
  4. 1 1
      libm/Makefile
  5. 63 45
      libm/fpmacros.c
  6. 48 0
      libm/nan.c

+ 107 - 0
include/complex.h

@@ -0,0 +1,107 @@
+/* Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+/*
+ *	ISO C99:  7.3 Complex arithmetic	<complex.h>
+ */
+
+#ifndef _COMPLEX_H
+#define _COMPLEX_H	1
+
+#include <features.h>
+
+/* Get general and ISO C99 specific information.  */
+#include <bits/mathdef.h>
+
+__BEGIN_DECLS
+
+/* We might need to add support for more compilers here.  But since ISO
+   C99 is out hopefully all maintained compilers will soon provide the data
+   types `float complex' and `double complex'.  */
+#if __GNUC_PREREQ (2, 7) && !__GNUC_PREREQ (2, 97)
+# define _Complex __complex__
+#endif
+
+#define complex		_Complex
+
+/* Narrowest imaginary unit.  This depends on the floating-point
+   evaluation method.
+   XXX This probably has to go into a gcc related file.  */
+#define _Complex_I	(__extension__ 1.0iF)
+
+/* Another more descriptive name is `I'.
+   XXX Once we have the imaginary support switch this to _Imaginary_I.  */
+#undef I
+#define I _Complex_I
+
+/* The file <bits/cmathcalls.h> contains the prototypes for all the
+   actual math functions.  These macros are used for those prototypes,
+   so we can easily declare each function as both `name' and `__name',
+   and can declare the float versions `namef' and `__namef'.  */
+
+#define __MATHCALL(function, args)	\
+  __MATHDECL (_Mdouble_complex_,function, args)
+#define __MATHDECL(type, function, args) \
+  __MATHDECL_1(type, function, args); \
+  __MATHDECL_1(type, __CONCAT(__,function), args)
+#define __MATHDECL_1(type, function, args) \
+  extern type __MATH_PRECNAME(function) args __THROW
+
+#define _Mdouble_ 		double
+#define __MATH_PRECNAME(name)	name
+#include <bits/cmathcalls.h>
+#undef	_Mdouble_
+#undef	__MATH_PRECNAME
+
+/* Now the float versions.  */
+#ifndef _Mfloat_
+# define _Mfloat_		float
+#endif
+#define _Mdouble_ 		_Mfloat_
+#ifdef __STDC__
+# define __MATH_PRECNAME(name)	name##f
+#else
+# define __MATH_PRECNAME(name)	name/**/f
+#endif
+#include <bits/cmathcalls.h>
+#undef	_Mdouble_
+#undef	__MATH_PRECNAME
+
+/* And the long double versions.  It is non-critical to define them
+   here unconditionally since `long double' is required in ISO C99.  */
+#if __STDC__ - 0 || __GNUC__ - 0 && !defined __NO_LONG_DOUBLE_MATH
+# ifndef _Mlong_double_
+#  define _Mlong_double_	long double
+# endif
+# define _Mdouble_ 		_Mlong_double_
+# ifdef __STDC__
+#  define __MATH_PRECNAME(name)	name##l
+# else
+#  define __MATH_PRECNAME(name)	name/**/l
+# endif
+# include <bits/cmathcalls.h>
+#endif
+#undef	_Mdouble_
+#undef	__MATH_PRECNAME
+#undef	__MATHDECL_1
+#undef	__MATHDECL
+#undef	__MATHCALL
+
+__END_DECLS
+
+#endif /* complex.h */

+ 98 - 0
include/fpu_control.h

@@ -0,0 +1,98 @@
+/* FPU control word bits.  i387 version.
+   Copyright (C) 1993,1995,1996,1997,1998,2000,2001 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Olaf Flebbe.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#ifndef _FPU_CONTROL_H
+#define _FPU_CONTROL_H	1
+
+/* Here is the dirty part. Set up your 387 through the control word
+ * (cw) register.
+ *
+ *     15-13    12  11-10  9-8     7-6     5    4    3    2    1    0
+ * | reserved | IC | RC  | PC | reserved | PM | UM | OM | ZM | DM | IM
+ *
+ * IM: Invalid operation mask
+ * DM: Denormalized operand mask
+ * ZM: Zero-divide mask
+ * OM: Overflow mask
+ * UM: Underflow mask
+ * PM: Precision (inexact result) mask
+ *
+ * Mask bit is 1 means no interrupt.
+ *
+ * PC: Precision control
+ * 11 - round to extended precision
+ * 10 - round to double precision
+ * 00 - round to single precision
+ *
+ * RC: Rounding control
+ * 00 - rounding to nearest
+ * 01 - rounding down (toward - infinity)
+ * 10 - rounding up (toward + infinity)
+ * 11 - rounding toward zero
+ *
+ * IC: Infinity control
+ * That is for 8087 and 80287 only.
+ *
+ * The hardware default is 0x037f which we use.
+ */
+
+#include <features.h>
+
+/* masking of interrupts */
+#define _FPU_MASK_IM  0x01
+#define _FPU_MASK_DM  0x02
+#define _FPU_MASK_ZM  0x04
+#define _FPU_MASK_OM  0x08
+#define _FPU_MASK_UM  0x10
+#define _FPU_MASK_PM  0x20
+
+/* precision control */
+#define _FPU_EXTENDED 0x300	/* libm requires double extended precision.  */
+#define _FPU_DOUBLE   0x200
+#define _FPU_SINGLE   0x0
+
+/* rounding control */
+#define _FPU_RC_NEAREST 0x0    /* RECOMMENDED */
+#define _FPU_RC_DOWN    0x400
+#define _FPU_RC_UP      0x800
+#define _FPU_RC_ZERO    0xC00
+
+#define _FPU_RESERVED 0xF0C0  /* Reserved bits in cw */
+
+
+/* The fdlibm code requires strict IEEE double precision arithmetic,
+   and no interrupts for exceptions, rounding to nearest.  */
+
+#define _FPU_DEFAULT  0x037f
+
+/* IEEE:  same as above.  */
+#define _FPU_IEEE     0x037f
+
+/* Type of the control word.  */
+typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
+
+/* Macros for accessing the hardware control word.  */
+#define _FPU_GETCW(cw) __asm__ ("fnstcw %0" : "=m" (*&cw))
+#define _FPU_SETCW(cw) __asm__ ("fldcw %0" : : "m" (*&cw))
+
+/* Default control word set at startup.  */
+extern fpu_control_t __fpu_control;
+
+#endif	/* fpu_control.h */

+ 430 - 0
include/tgmath.h

@@ -0,0 +1,430 @@
+/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+/*
+ *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
+ */
+
+#ifndef _TGMATH_H
+#define _TGMATH_H	1
+
+/* Include the needed headers.  */
+#include <math.h>
+#include <complex.h>
+
+
+/* Since `complex' is currently not really implemented in most C compilers
+   and if it is implemented, the implementations differ.  This makes it
+   quite difficult to write a generic implementation of this header.  We
+   do not try this for now and instead concentrate only on GNU CC.  Once
+   we have more information support for other compilers might follow.  */
+
+#if __GNUC_PREREQ (2, 7)
+
+# ifdef __NO_LONG_DOUBLE_MATH
+#  define __tgml(fct) fct
+# else
+#  define __tgml(fct) fct ## l
+# endif
+
+/* This is ugly but unless gcc gets appropriate builtins we have to do
+   something like this.  Don't ask how it works.  */
+
+/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
+   Allows for _Bool.  Expands to an integer constant expression.  */
+# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
+
+/* The tgmath real type for T, where E is 0 if T is an integer type and
+   1 for a floating type.  */
+# define __tgmath_real_type_sub(T, E) \
+  __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
+		 : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
+
+/* The tgmath real type of EXPR.  */
+# define __tgmath_real_type(expr) \
+  __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
+
+
+/* We have two kinds of generic macros: to support functions which are
+   only defined on real valued parameters and those which are defined
+   for complex functions as well.  */
+# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
+     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
+		       if (sizeof (Val) == sizeof (double)		      \
+			   || __builtin_classify_type (Val) != 8)	      \
+			 __tgmres = Fct (Val);				      \
+		       else if (sizeof (Val) == sizeof (float))		      \
+			 __tgmres = Fct##f (Val);			      \
+		       else 						      \
+			 __tgmres = __tgml(Fct) (Val);			      \
+		       __tgmres; }))
+
+# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
+     (__extension__ ({ __tgmath_real_type (Val1) __tgmres;		      \
+		       if (sizeof (Val1) == sizeof (double)		      \
+			   || __builtin_classify_type (Val1) != 8)	      \
+			 __tgmres = Fct (Val1, Val2);			      \
+		       else if (sizeof (Val1) == sizeof (float))	      \
+			 __tgmres = Fct##f (Val1, Val2);		      \
+		       else 						      \
+			 __tgmres = __tgml(Fct) (Val1, Val2);		      \
+		       __tgmres; }))
+
+# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
+     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
+		       if ((sizeof (Val1) > sizeof (double)		      \
+			    || sizeof (Val2) > sizeof (double))		      \
+			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \
+			 __tgmres = __tgml(Fct) (Val1, Val2);		      \
+		       else if (sizeof (Val1) == sizeof (double)	      \
+				|| sizeof (Val2) == sizeof (double)	      \
+				|| __builtin_classify_type (Val1) != 8	      \
+				|| __builtin_classify_type (Val2) != 8)	      \
+			 __tgmres = Fct (Val1, Val2);			      \
+		       else						      \
+			 __tgmres = Fct##f (Val1, Val2);		      \
+		       __tgmres; }))
+
+# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
+     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
+		       if ((sizeof (Val1) > sizeof (double)		      \
+			    || sizeof (Val2) > sizeof (double))		      \
+			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \
+			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \
+		       else if (sizeof (Val1) == sizeof (double)	      \
+				|| sizeof (Val2) == sizeof (double)	      \
+				|| __builtin_classify_type (Val1) != 8	      \
+				|| __builtin_classify_type (Val2) != 8)	      \
+			 __tgmres = Fct (Val1, Val2, Val3);		      \
+		       else						      \
+			 __tgmres = Fct##f (Val1, Val2, Val3);		      \
+		       __tgmres; }))
+
+# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
+     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
+		       if ((sizeof (Val1) > sizeof (double)		      \
+			    || sizeof (Val2) > sizeof (double)		      \
+			    || sizeof (Val3) > sizeof (double))		      \
+			   && __builtin_classify_type ((Val1) + (Val2)	      \
+						       + (Val3)) == 8)	      \
+			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \
+		       else if (sizeof (Val1) == sizeof (double)	      \
+				|| sizeof (Val2) == sizeof (double)	      \
+				|| sizeof (Val3) == sizeof (double)	      \
+				|| __builtin_classify_type (Val1) != 8	      \
+				|| __builtin_classify_type (Val2) != 8	      \
+				|| __builtin_classify_type (Val3) != 8)	      \
+			 __tgmres = Fct (Val1, Val2, Val3);		      \
+		       else						      \
+			 __tgmres = Fct##f (Val1, Val2, Val3);		      \
+		       __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+   the imaginary keyword.  */
+# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
+     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
+		       if (sizeof (__real__ (Val)) > sizeof (double)	      \
+			   && __builtin_classify_type (__real__ (Val)) == 8)  \
+			 {						      \
+			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
+			     __tgmres = __tgml(Fct) (Val);		      \
+			   else						      \
+			     __tgmres = __tgml(Cfct) (Val);		      \
+			 }						      \
+		       else if (sizeof (__real__ (Val)) == sizeof (double)    \
+				|| __builtin_classify_type (__real__ (Val))   \
+				   != 8)				      \
+			 {						      \
+			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
+			     __tgmres = Fct (Val);			      \
+			   else						      \
+			     __tgmres = Cfct (Val);			      \
+			 }						      \
+		       else 						      \
+			 {						      \
+			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
+			     __tgmres = Fct##f (Val);			      \
+			   else						      \
+			     __tgmres = Cfct##f (Val);			      \
+			 }						      \
+		       __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+   the imaginary keyword.  */
+# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
+     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
+		       if (sizeof (Val) == sizeof (__complex__ double)	      \
+			   || __builtin_classify_type (__real__ (Val)) != 8)  \
+			 __tgmres = Fct (Val);				      \
+		       else if (sizeof (Val) == sizeof (__complex__ float))   \
+			 __tgmres = Fct##f (Val);			      \
+		       else 						      \
+			 __tgmres = __tgml(Fct) (Val);			      \
+		       __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+   the imaginary keyword.  */
+# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
+     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
+		       if ((sizeof (__real__ (Val1)) > sizeof (double)	      \
+			    || sizeof (__real__ (Val2)) > sizeof (double))    \
+			   && __builtin_classify_type (__real__ (Val1)	      \
+						       + __real__ (Val2))     \
+			      == 8)					      \
+			 {						      \
+			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
+			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
+			     __tgmres = __tgml(Fct) (Val1, Val2);	      \
+			   else						      \
+			     __tgmres = __tgml(Cfct) (Val1, Val2);	      \
+			 }						      \
+		       else if (sizeof (__real__ (Val1)) == sizeof (double)   \
+				|| sizeof (__real__ (Val2)) == sizeof(double) \
+				|| (__builtin_classify_type (__real__ (Val1)) \
+				    != 8)				      \
+				|| (__builtin_classify_type (__real__ (Val2)) \
+				    != 8))				      \
+			 {						      \
+			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
+			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
+			     __tgmres = Fct (Val1, Val2);		      \
+			   else						      \
+			     __tgmres = Cfct (Val1, Val2);		      \
+			 }						      \
+		       else						      \
+			 {						      \
+			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
+			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
+			     __tgmres = Fct##f (Val1, Val2);		      \
+			   else						      \
+			     __tgmres = Cfct##f (Val1, Val2);		      \
+			 }						      \
+		       __tgmres; }))
+#else
+# error "Unsupported compiler; you cannot use <tgmath.h>"
+#endif
+
+
+/* Unary functions defined for real and complex values.  */
+
+
+/* Trigonometric functions.  */
+
+/* Arc cosine of X.  */
+#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
+/* Arc sine of X.  */
+#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
+/* Arc tangent of X.  */
+#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
+/* Arc tangent of Y/X.  */
+#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
+
+/* Cosine of X.  */
+#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
+/* Sine of X.  */
+#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
+/* Tangent of X.  */
+#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
+
+
+/* Hyperbolic functions.  */
+
+/* Hyperbolic arc cosine of X.  */
+#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
+/* Hyperbolic arc sine of X.  */
+#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
+/* Hyperbolic arc tangent of X.  */
+#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
+
+/* Hyperbolic cosine of X.  */
+#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
+/* Hyperbolic sine of X.  */
+#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
+/* Hyperbolic tangent of X.  */
+#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
+
+
+/* Exponential and logarithmic functions.  */
+
+/* Exponential function of X.  */
+#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
+
+/* Break VALUE into a normalized fraction and an integral power of 2.  */
+#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
+
+/* X times (two to the EXP power).  */
+#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
+
+/* Natural logarithm of X.  */
+#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
+
+/* Base-ten logarithm of X.  */
+#ifdef __USE_GNU
+# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
+#else
+# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
+#endif
+
+/* Return exp(X) - 1.  */
+#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
+
+/* Return log(1 + X).  */
+#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
+
+/* Return the base 2 signed integral exponent of X.  */
+#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
+
+/* Compute base-2 exponential of X.  */
+#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
+
+/* Compute base-2 logarithm of X.  */
+#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
+
+
+/* Power functions.  */
+
+/* Return X to the Y power.  */
+#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
+
+/* Return the square root of X.  */
+#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
+
+/* Return `sqrt(X*X + Y*Y)'.  */
+#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
+
+/* Return the cube root of X.  */
+#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
+
+
+/* Nearest integer, absolute value, and remainder functions.  */
+
+/* Smallest integral value not less than X.  */
+#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
+
+/* Absolute value of X.  */
+#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
+
+/* Largest integer not greater than X.  */
+#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
+
+/* Floating-point modulo remainder of X/Y.  */
+#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
+
+/* Round X to integral valuein floating-point format using current
+   rounding direction, but do not raise inexact exception.  */
+#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
+
+/* Round X to nearest integral value, rounding halfway cases away from
+   zero.  */
+#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
+
+/* Round X to the integral value in floating-point format nearest but
+   not larger in magnitude.  */
+#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
+
+/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
+   and magnitude congruent `mod 2^n' to the magnitude of the integral
+   quotient x/y, with n >= 3.  */
+#define remquo(Val1, Val2, Val3) \
+     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
+
+/* Round X to nearest integral value according to current rounding
+   direction.  */
+#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
+#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
+
+/* Round X to nearest integral value, rounding halfway cases away from
+   zero.  */
+#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
+#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
+
+
+/* Return X with its signed changed to Y's.  */
+#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
+
+/* Error and gamma functions.  */
+#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
+#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
+#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
+#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
+
+
+/* Return the integer nearest X in the direction of the
+   prevailing rounding mode.  */
+#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
+
+/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
+#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
+#define nexttoward(Val1, Val2) \
+     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
+
+/* Return the remainder of integer divison X / Y with infinite precision.  */
+#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
+
+/* Return X times (2 to the Nth power).  */
+#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
+# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
+#endif
+
+/* Return X times (2 to the Nth power).  */
+#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
+
+/* Return X times (2 to the Nth power).  */
+#define scalbln(Val1, Val2) \
+     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
+
+/* Return the binary exponent of X, which must be nonzero.  */
+#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
+
+
+/* Return positive difference between X and Y.  */
+#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
+
+/* Return maximum numeric value from X and Y.  */
+#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
+
+/* Return minimum numeric value from X and Y.  */
+#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
+
+
+/* Multiply-add function computed as a ternary operation.  */
+#define fma(Val1, Val2, Val3) \
+     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
+
+
+/* Absolute value, conjugates, and projection.  */
+
+/* Argument value of Z.  */
+#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
+
+/* Complex conjugate of Z.  */
+#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
+
+/* Projection of Z onto the Riemann sphere.  */
+#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
+
+
+/* Decomposing complex values.  */
+
+/* Imaginary part of Z.  */
+#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
+
+/* Real part of Z.  */
+#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
+
+#endif /* tgmath.h */

+ 1 - 1
libm/Makefile

@@ -62,7 +62,7 @@ CSRC =   e_acos.c e_acosh.c e_asin.c e_atan2.c e_atanh.c e_cosh.c\
          w_cosh.c w_drem.c w_exp.c w_fmod.c w_gamma.c w_gamma_r.c\
          w_hypot.c w_j0.c w_j1.c w_jn.c w_lgamma.c w_lgamma_r.c\
          w_log.c w_log10.c w_pow.c w_remainder.c w_scalb.c w_sinh.c\
-         w_sqrt.c w_sqrtf.c fpmacros.c
+         w_sqrt.c w_sqrtf.c fpmacros.c nan.c
 else
 # This list of math functions was taken from POSIX/IEEE 1003.1b-1993
 CSRC =   w_acos.c w_asin.c s_atan.c w_atan2.c s_ceil.c s_cos.c \

+ 63 - 45
libm/fpmacros.c

@@ -15,8 +15,8 @@
 **   
 **  Change History (most recent first):
 **
-**     07 Jul 01   ram      First created from fpfloatfunc.c, fp.c,
-**							classify.c and sign.c in MathLib v3 Mac OS9.
+**     07 Jul 01   ram      First created from fpfloatfunc.c, fp.c, 
+**				classify.c and sign.c in MathLib v3 Mac OS9.
 **            
 ***********************************************************************/
 
@@ -148,7 +148,7 @@ long int __isnorma ( double x )
    Calls:  none
 ***********************************************************************/
 
-long int __isfinitef ( float x )
+long int __finitef ( float x )
 {   
    union {
       unsigned long int lval;
@@ -159,12 +159,55 @@ long int __isfinitef ( float x )
    return ((z.lval & FEXP_MASK) != FEXP_MASK);
 }
    
-long int __isfinite ( double x )
+long int __finite ( double x )
 {
 	return ( __fpclassify ( x ) >= FP_ZERO ); 
 }
 
 
+/***********************************************************************
+   long int __signbitf(float x) returns nonzero if and only if the sign
+   bit of x is set and zero otherwise.
+   
+   Exceptions:  INVALID is raised if x is a signaling NaN.
+   
+   Calls:  none
+***********************************************************************/
+
+long int __signbitf ( float x )
+{   
+   union {
+      unsigned long int lval;
+      float fval;
+   } z;
+   
+   z.fval = x;
+   return ((z.lval & SIGN_MASK) != 0);
+}
+
+
+/***********************************************************************
+      Function sign of a double.                                              
+      Implementation of sign bit for the PowerPC.                             
+   
+   Calls:  none
+***********************************************************************/
+
+long int __signbit ( double arg )
+{
+      union
+            {
+            dHexParts hex;
+            double dbl;
+            } x;
+      long int sign;
+
+      x.dbl = arg;
+      sign = ( ( x.hex.high & dSgnMask ) == dSgnMask ) ? 1 : 0;
+      return sign;
+}
+
+
 /***********************************************************************
 * long int __isinff(float x) returns -1 if value represents  negative
 *	infinity,  1  if value represents positive infinity,
@@ -190,6 +233,17 @@ long int __isinf ( double x )
     return 0;
 }
 
+#if 0
+long int __isinfl ( long double x )
+{
+    long int class = __fpclassify(x);
+    if ( class == FP_INFINITE ) {
+	return ( (__signbit(x)) ? -1 : 1);
+    }
+    return 0;
+}
+#endif
+
 /***********************************************************************
    long int __isnanf(float x) returns nonzero if and only if x is a
    NaN and zero otherwise.
@@ -217,47 +271,11 @@ long int __isnan ( double x )
 	return ( ( class == FP_SNAN ) || ( class == FP_QNAN ) ); 
 }
 
-
-/***********************************************************************
-   long int __signbitf(float x) returns nonzero if and only if the sign
-   bit of x is set and zero otherwise.
-   
-   Exceptions:  INVALID is raised if x is a signaling NaN.
-   
-   Calls:  none
-***********************************************************************/
-
-long int __signbitf ( float x )
-{   
-   union {
-      unsigned long int lval;
-      float fval;
-   } z;
-   
-   z.fval = x;
-   return ((z.lval & SIGN_MASK) != 0);
-}
-
-
-/***********************************************************************
-      Function sign of a double.                                              
-      Implementation of sign bit for the PowerPC.                             
-   
-   Calls:  none
-***********************************************************************/
-
-long int __signbit ( double arg )
+#if 0
+long int __isnanl ( long double x )
 {
-      union
-            {
-            dHexParts hex;
-            double dbl;
-            } x;
-      long int sign;
-
-      x.dbl = arg;
-      sign = ( ( x.hex.high & dSgnMask ) == dSgnMask ) ? 1 : 0;
-      return sign;
+	long int class = __fpclassify(x);
+	return ( ( class == FP_SNAN ) || ( class == FP_QNAN ) ); 
 }
-
+#endif
 

+ 48 - 0
libm/nan.c

@@ -0,0 +1,48 @@
+/***********************************************************************
+    nan, nanf, nanl - return quiet NaN
+
+	These functions shall return a quiet NaN, if available, with content
+	indicated through tagp.
+
+	If the implementation does not support quiet NaNs, these functions
+	shall return zero.
+
+   Calls:  strlen(), sprintf(), strtod()
+
+***********************************************************************/
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+double nan (const char *tagp)
+{
+    if (tagp[0] != '\0') {
+	char buf[6 + strlen (tagp)];
+	sprintf (buf, "NAN(%s)", tagp);
+	return strtod (buf, NULL);
+    }
+    return NAN;
+}
+
+float nanf (const char *tagp)
+{
+    if (tagp[0] != '\0') {
+	char buf[6 + strlen (tagp)];
+	sprintf (buf, "NAN(%s)", tagp);
+	return strtof (buf, NULL);
+    }
+    return NAN;
+}
+
+#if 0
+long double nanl (const char *tagp)
+{
+    if (tagp[0] != '\0') {
+	char buf[6 + strlen (tagp)];
+	sprintf (buf, "NAN(%s)", tagp);
+	return strtold (buf, NULL);
+    }
+    return NAN;
+}
+#endif