|
@@ -1,9 +1,17 @@
|
|
|
|
|
|
- * FreeSec: libcrypt
|
|
|
+ * FreeSec: libcrypt for NetBSD
|
|
|
*
|
|
|
* Copyright (c) 1994 David Burren
|
|
|
* All rights reserved.
|
|
|
*
|
|
|
+ * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
|
+ * this file should now *only* export crypt(), in order to make
|
|
|
+ * binaries of libcrypt exportable from the USA
|
|
|
+ *
|
|
|
+ * Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
|
+ * this file should now *only* export crypt_des(), in order to make
|
|
|
+ * a module that can be optionally included in libcrypt.
|
|
|
+ *
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
* are met:
|
|
@@ -12,7 +20,7 @@
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
- * 4. Neither the name of the author nor the names of other contributors
|
|
|
+ * 3. Neither the name of the author nor the names of other contributors
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
* without specific prior written permission.
|
|
|
*
|
|
@@ -28,7 +36,6 @@
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
* SUCH DAMAGE.
|
|
|
*
|
|
|
- *
|
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
|
* by David Burren <davidb@werj.com.au>.
|
|
|
*
|
|
@@ -43,12 +50,10 @@
|
|
|
* attention of the author). A list of errata for this book has been
|
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
|
*
|
|
|
- * NOTE:
|
|
|
- * This file must copy certain chunks of crypt.c for legal reasons.
|
|
|
- * crypt.c can only export the interface crypt(), to make binaries
|
|
|
- * exportable from the USA. Hence, to also have the other crypto interfaces
|
|
|
- * available we have to copy pieces...
|
|
|
- *
|
|
|
+ * ARCHITECTURE ASSUMPTIONS:
|
|
|
+ * It is assumed that the 8-byte arrays passed by reference can be
|
|
|
+ * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
|
|
|
+ * alignment).
|
|
|
*/
|
|
|
|
|
|
#define __FORCE_GLIBC
|
|
@@ -65,7 +70,6 @@
|
|
|
static u_char inv_key_perm[64];
|
|
|
static u_char inv_comp_perm[56];
|
|
|
static u_char u_sbox[8][64];
|
|
|
-static u_char u_key_perm[56];
|
|
|
static u_char un_pbox[32];
|
|
|
static u_int32_t en_keysl[16], en_keysr[16];
|
|
|
static u_int32_t de_keysl[16], de_keysr[16];
|
|
@@ -74,6 +78,8 @@ static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
|
|
|
static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
|
|
|
static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
|
|
|
static u_int32_t saltbits;
|
|
|
+static u_int32_t old_salt;
|
|
|
+static u_int32_t old_rawkey0, old_rawkey1;
|
|
|
|
|
|
|
|
|
|
|
@@ -190,8 +196,8 @@ static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
|
|
|
static const u_int32_t *bits28, *bits24;
|
|
|
|
|
|
|
|
|
-
|
|
|
-static __inline int ascii_to_bin(char ch)
|
|
|
+static int
|
|
|
+ascii_to_bin(char ch)
|
|
|
{
|
|
|
if (ch > 'z')
|
|
|
return(0);
|
|
@@ -208,7 +214,8 @@ static __inline int ascii_to_bin(char ch)
|
|
|
return(0);
|
|
|
}
|
|
|
|
|
|
-static void des_init(void)
|
|
|
+static void
|
|
|
+des_init(void)
|
|
|
{
|
|
|
int i, j, b, k, inbit, obit;
|
|
|
u_int32_t *p, *il, *ir, *fl, *fr;
|
|
@@ -217,7 +224,9 @@ static void des_init(void)
|
|
|
if (des_initialised==1)
|
|
|
return;
|
|
|
|
|
|
- saltbits = 0;
|
|
|
+ old_rawkey0 = old_rawkey1 = 0L;
|
|
|
+ saltbits = 0L;
|
|
|
+ old_salt = 0L;
|
|
|
bits24 = (bits28 = bits32 + 4) + 4;
|
|
|
|
|
|
|
|
@@ -237,15 +246,15 @@ static void des_init(void)
|
|
|
for (i = 0; i < 64; i++)
|
|
|
for (j = 0; j < 64; j++)
|
|
|
m_sbox[b][(i << 6) | j] =
|
|
|
- (u_sbox[(b << 1)][i] << 4) |
|
|
|
- u_sbox[(b << 1) + 1][j];
|
|
|
+ (u_char)((u_sbox[(b << 1)][i] << 4) |
|
|
|
+ u_sbox[(b << 1) + 1][j]);
|
|
|
|
|
|
|
|
|
* Set up the initial & final permutations into a useful form, and
|
|
|
* initialise the inverted key permutation.
|
|
|
*/
|
|
|
for (i = 0; i < 64; i++) {
|
|
|
- init_perm[final_perm[i] = IP[i] - 1] = i;
|
|
|
+ init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
|
|
|
inv_key_perm[i] = 255;
|
|
|
}
|
|
|
|
|
@@ -254,8 +263,7 @@ static void des_init(void)
|
|
|
* compression permutation.
|
|
|
*/
|
|
|
for (i = 0; i < 56; i++) {
|
|
|
- u_key_perm[i] = key_perm[i] - 1;
|
|
|
- inv_key_perm[key_perm[i] - 1] = i;
|
|
|
+ inv_key_perm[key_perm[i] - 1] = (u_char)i;
|
|
|
inv_comp_perm[i] = 255;
|
|
|
}
|
|
|
|
|
@@ -263,7 +271,7 @@ static void des_init(void)
|
|
|
* Invert the key compression permutation.
|
|
|
*/
|
|
|
for (i = 0; i < 48; i++) {
|
|
|
- inv_comp_perm[comp_perm[i] - 1] = i;
|
|
|
+ inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -272,10 +280,10 @@ static void des_init(void)
|
|
|
*/
|
|
|
for (k = 0; k < 8; k++) {
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
- *(il = &ip_maskl[k][i]) = 0;
|
|
|
- *(ir = &ip_maskr[k][i]) = 0;
|
|
|
- *(fl = &fp_maskl[k][i]) = 0;
|
|
|
- *(fr = &fp_maskr[k][i]) = 0;
|
|
|
+ *(il = &ip_maskl[k][i]) = 0L;
|
|
|
+ *(ir = &ip_maskr[k][i]) = 0L;
|
|
|
+ *(fl = &fp_maskl[k][i]) = 0L;
|
|
|
+ *(fr = &fp_maskr[k][i]) = 0L;
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
inbit = 8 * k + j;
|
|
|
if (i & bits8[j]) {
|
|
@@ -291,8 +299,8 @@ static void des_init(void)
|
|
|
}
|
|
|
}
|
|
|
for (i = 0; i < 128; i++) {
|
|
|
- *(il = &key_perm_maskl[k][i]) = 0;
|
|
|
- *(ir = &key_perm_maskr[k][i]) = 0;
|
|
|
+ *(il = &key_perm_maskl[k][i]) = 0L;
|
|
|
+ *(ir = &key_perm_maskr[k][i]) = 0L;
|
|
|
for (j = 0; j < 7; j++) {
|
|
|
inbit = 8 * k + j;
|
|
|
if (i & bits8[j + 1]) {
|
|
@@ -304,8 +312,8 @@ static void des_init(void)
|
|
|
*ir |= bits28[obit - 28];
|
|
|
}
|
|
|
}
|
|
|
- *(il = &comp_maskl[k][i]) = 0;
|
|
|
- *(ir = &comp_maskr[k][i]) = 0;
|
|
|
+ *(il = &comp_maskl[k][i]) = 0L;
|
|
|
+ *(ir = &comp_maskr[k][i]) = 0L;
|
|
|
for (j = 0; j < 7; j++) {
|
|
|
inbit = 7 * k + j;
|
|
|
if (i & bits8[j + 1]) {
|
|
@@ -325,11 +333,11 @@ static void des_init(void)
|
|
|
* handling the output of the S-box arrays setup above.
|
|
|
*/
|
|
|
for (i = 0; i < 32; i++)
|
|
|
- un_pbox[pbox[i] - 1] = i;
|
|
|
+ un_pbox[pbox[i] - 1] = (u_char)i;
|
|
|
|
|
|
for (b = 0; b < 4; b++)
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
- *(p = &psbox[b][i]) = 0;
|
|
|
+ *(p = &psbox[b][i]) = 0L;
|
|
|
for (j = 0; j < 8; j++) {
|
|
|
if (i & bits8[j])
|
|
|
*p |= bits32[un_pbox[8 * b + j]];
|
|
@@ -339,17 +347,18 @@ static void des_init(void)
|
|
|
des_initialised = 1;
|
|
|
}
|
|
|
|
|
|
-static void setup_salt(int32_t salt)
|
|
|
+
|
|
|
+static void
|
|
|
+setup_salt(long salt)
|
|
|
{
|
|
|
u_int32_t obit, saltbit;
|
|
|
int i;
|
|
|
- static int32_t old_salt = 0;
|
|
|
|
|
|
if (salt == old_salt)
|
|
|
return;
|
|
|
old_salt = salt;
|
|
|
|
|
|
- saltbits = 0;
|
|
|
+ saltbits = 0L;
|
|
|
saltbit = 1;
|
|
|
obit = 0x800000;
|
|
|
for (i = 0; i < 24; i++) {
|
|
@@ -360,21 +369,96 @@ static void setup_salt(int32_t salt)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out,
|
|
|
- int count, struct crypt_data *data)
|
|
|
+
|
|
|
+static int
|
|
|
+des_setkey(const char *key)
|
|
|
+{
|
|
|
+ u_int32_t k0, k1, rawkey0, rawkey1;
|
|
|
+ int shifts, round;
|
|
|
+
|
|
|
+ des_init();
|
|
|
+
|
|
|
+ rawkey0 = ntohl(*(const u_int32_t *) key);
|
|
|
+ rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
|
|
|
+
|
|
|
+ if ((rawkey0 | rawkey1)
|
|
|
+ && rawkey0 == old_rawkey0
|
|
|
+ && rawkey1 == old_rawkey1) {
|
|
|
+
|
|
|
+ * Already setup for this key.
|
|
|
+ * This optimisation fails on a zero key (which is weak and
|
|
|
+ * has bad parity anyway) in order to simplify the starting
|
|
|
+ * conditions.
|
|
|
+ */
|
|
|
+ return(0);
|
|
|
+ }
|
|
|
+ old_rawkey0 = rawkey0;
|
|
|
+ old_rawkey1 = rawkey1;
|
|
|
+
|
|
|
+
|
|
|
+ * Do key permutation and split into two 28-bit subkeys.
|
|
|
+ */
|
|
|
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
|
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
|
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
|
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
|
+ | key_perm_maskl[4][rawkey1 >> 25]
|
|
|
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
|
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
|
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
|
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
|
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
|
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
|
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
|
+ | key_perm_maskr[4][rawkey1 >> 25]
|
|
|
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
|
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
|
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
|
+
|
|
|
+ * Rotate subkeys and do compression permutation.
|
|
|
+ */
|
|
|
+ shifts = 0;
|
|
|
+ for (round = 0; round < 16; round++) {
|
|
|
+ u_int32_t t0, t1;
|
|
|
+
|
|
|
+ shifts += key_shifts[round];
|
|
|
+
|
|
|
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
|
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
+
|
|
|
+ de_keysl[15 - round] =
|
|
|
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
|
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
|
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
|
+ | comp_maskl[3][t0 & 0x7f]
|
|
|
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
|
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
|
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
|
+ | comp_maskl[7][t1 & 0x7f];
|
|
|
+
|
|
|
+ de_keysr[15 - round] =
|
|
|
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
|
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
|
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
|
+ | comp_maskr[3][t0 & 0x7f]
|
|
|
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
|
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
|
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
|
+ | comp_maskr[7][t1 & 0x7f];
|
|
|
+ }
|
|
|
+ return(0);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+static int
|
|
|
+do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
|
|
|
{
|
|
|
|
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
|
*/
|
|
|
- int round;
|
|
|
u_int32_t l, r, *kl, *kr, *kl1, *kr1;
|
|
|
u_int32_t f, r48l, r48r;
|
|
|
-#if 0
|
|
|
- u_int32_t *en_keysl = &(data->key[0]);
|
|
|
- u_int32_t *en_keysr = &(data->key[16]);
|
|
|
- u_int32_t *de_keysl = &(data->key[32]);
|
|
|
- u_int32_t *de_keysr = &(data->key[48]);
|
|
|
-#endif
|
|
|
+ int round;
|
|
|
|
|
|
if (count == 0) {
|
|
|
return(1);
|
|
@@ -482,97 +566,41 @@ static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r
|
|
|
return(0);
|
|
|
}
|
|
|
|
|
|
-static int des_setkey_r(const char *key, struct crypt_data *data)
|
|
|
-{
|
|
|
- u_int32_t k0, k1, rawkey0, rawkey1;
|
|
|
- int shifts, round;
|
|
|
- static u_int32_t old_rawkey0=0, old_rawkey1=0;
|
|
|
-
|
|
|
|
|
|
#if 0
|
|
|
- u_int32_t *en_keysl = &(data->key[0]);
|
|
|
- u_int32_t *en_keysr = &(data->key[16]);
|
|
|
- u_int32_t *de_keysl = &(data->key[32]);
|
|
|
- u_int32_t *de_keysr = &(data->key[48]);
|
|
|
-#endif
|
|
|
+static int
|
|
|
+des_cipher(const char *in, char *out, u_int32_t salt, int count)
|
|
|
+{
|
|
|
+ u_int32_t l_out, r_out, rawl, rawr;
|
|
|
+ int retval;
|
|
|
+ union {
|
|
|
+ u_int32_t *ui32;
|
|
|
+ const char *c;
|
|
|
+ } trans;
|
|
|
|
|
|
des_init();
|
|
|
|
|
|
- rawkey0 = ntohl(*(u_int32_t *) key);
|
|
|
- rawkey1 = ntohl(*(u_int32_t *) (key + 4));
|
|
|
-
|
|
|
- if ((rawkey0 | rawkey1)
|
|
|
- && rawkey0 == old_rawkey0
|
|
|
- && rawkey1 == old_rawkey1) {
|
|
|
-
|
|
|
- * Already setup for this key.
|
|
|
- * This optimisation fails on a zero key (which is weak and
|
|
|
- * has bad parity anyway) in order to simplify the starting
|
|
|
- * conditions.
|
|
|
- */
|
|
|
- return(0);
|
|
|
- }
|
|
|
- old_rawkey0 = rawkey0;
|
|
|
- old_rawkey1 = rawkey1;
|
|
|
-
|
|
|
-
|
|
|
- * Do key permutation and split into two 28-bit subkeys.
|
|
|
- */
|
|
|
- k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
|
- | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
|
- | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
|
- | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
|
- | key_perm_maskl[4][rawkey1 >> 25]
|
|
|
- | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
|
- | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
|
- | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
|
- k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
|
- | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
|
- | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
|
- | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
|
- | key_perm_maskr[4][rawkey1 >> 25]
|
|
|
- | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
|
- | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
|
- | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
|
-
|
|
|
- * Rotate subkeys and do compression permutation.
|
|
|
- */
|
|
|
- shifts = 0;
|
|
|
- for (round = 0; round < 16; round++) {
|
|
|
- u_int32_t t0, t1;
|
|
|
+ setup_salt(salt);
|
|
|
|
|
|
- shifts += key_shifts[round];
|
|
|
+ trans.c = in;
|
|
|
+ rawl = ntohl(*trans.ui32++);
|
|
|
+ rawr = ntohl(*trans.ui32);
|
|
|
|
|
|
- t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
|
- t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
+ retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
|
|
|
|
|
- de_keysl[15 - round] =
|
|
|
- en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
|
- | comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
|
- | comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
|
- | comp_maskl[3][t0 & 0x7f]
|
|
|
- | comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
|
- | comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
|
- | comp_maskl[6][(t1 >> 7) & 0x7f]
|
|
|
- | comp_maskl[7][t1 & 0x7f];
|
|
|
-
|
|
|
- de_keysr[15 - round] =
|
|
|
- en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
|
- | comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
|
- | comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
|
- | comp_maskr[3][t0 & 0x7f]
|
|
|
- | comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
|
- | comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
|
- | comp_maskr[6][(t1 >> 7) & 0x7f]
|
|
|
- | comp_maskr[7][t1 & 0x7f];
|
|
|
- }
|
|
|
- return(0);
|
|
|
+ trans.c = out;
|
|
|
+ *trans.ui32++ = htonl(l_out);
|
|
|
+ *trans.ui32 = htonl(r_out);
|
|
|
+ return(retval);
|
|
|
}
|
|
|
+#endif
|
|
|
+
|
|
|
|
|
|
-static int __des_setkey_r(const char *key, struct crypt_data *data)
|
|
|
+void
|
|
|
+setkey(const char *key)
|
|
|
{
|
|
|
int i, j;
|
|
|
- u_int32_t packed_keys[2];
|
|
|
+ u_int32_t packed_keys[2];
|
|
|
u_char *p;
|
|
|
|
|
|
p = (u_char *) packed_keys;
|
|
@@ -583,40 +611,39 @@ static int __des_setkey_r(const char *key, struct crypt_data *data)
|
|
|
if (*key++ & 1)
|
|
|
p[i] |= bits8[j];
|
|
|
}
|
|
|
- return(des_setkey_r(p, data));
|
|
|
+ des_setkey(p);
|
|
|
}
|
|
|
|
|
|
-static int __des_encrypt_r(char *block, int flag, struct crypt_data *data)
|
|
|
+
|
|
|
+void
|
|
|
+encrypt(char *block, int flag)
|
|
|
{
|
|
|
- u_int32_t io[2];
|
|
|
+ u_int32_t io[2];
|
|
|
u_char *p;
|
|
|
- int i, j, retval;
|
|
|
+ int i, j;
|
|
|
|
|
|
des_init();
|
|
|
|
|
|
- setup_salt((int32_t)0);
|
|
|
- p = (u_char *)block;
|
|
|
+ setup_salt(0L);
|
|
|
+ p = block;
|
|
|
for (i = 0; i < 2; i++) {
|
|
|
io[i] = 0L;
|
|
|
for (j = 0; j < 32; j++)
|
|
|
if (*p++ & 1)
|
|
|
io[i] |= bits32[j];
|
|
|
}
|
|
|
- retval = do_des(io[0], io[1], io, io + 1, flag ? -1 : 1, data);
|
|
|
+ do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);
|
|
|
for (i = 0; i < 2; i++)
|
|
|
for (j = 0; j < 32; j++)
|
|
|
block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
|
|
|
- return(retval);
|
|
|
}
|
|
|
|
|
|
-extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_data *data)
|
|
|
+char *
|
|
|
+__des_crypt(const char *key, const char *setting)
|
|
|
{
|
|
|
u_int32_t count, salt, l, r0, r1, keybuf[2];
|
|
|
u_char *p, *q;
|
|
|
-
|
|
|
- * I'd create a separate field in struct crypt_data, but this spot
|
|
|
- * should do nicely for now... */
|
|
|
- char *output = data->key.b_data;
|
|
|
+ static char output[21];
|
|
|
|
|
|
des_init();
|
|
|
|
|
@@ -630,13 +657,12 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da
|
|
|
if (*(q - 1))
|
|
|
key++;
|
|
|
}
|
|
|
-
|
|
|
- if (des_setkey_r((char *)keybuf, data))
|
|
|
+ if (des_setkey((char *)keybuf))
|
|
|
return(NULL);
|
|
|
|
|
|
#if 0
|
|
|
if (*setting == _PASSWORD_EFMT1) {
|
|
|
- int i;
|
|
|
+ int i;
|
|
|
|
|
|
* "new"-style:
|
|
|
* setting - underscore, 4 bytes of count, 4 bytes of salt
|
|
@@ -652,7 +678,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da
|
|
|
|
|
|
* Encrypt the key with itself.
|
|
|
*/
|
|
|
- if (__des_encrypt_r((char *)keybuf, (char *)keybuf, 0L, 1), data)
|
|
|
+ if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
|
|
|
return(NULL);
|
|
|
|
|
|
* And XOR with the next 8 characters of the key.
|
|
@@ -661,7 +687,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da
|
|
|
while (q - (u_char *)keybuf - 8 && *key)
|
|
|
*q++ ^= *key++ << 1;
|
|
|
|
|
|
- if (__des_setkey((char *)keybuf))
|
|
|
+ if (des_setkey((char *)keybuf))
|
|
|
return(NULL);
|
|
|
}
|
|
|
strncpy(output, setting, 9);
|
|
@@ -703,7 +729,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da
|
|
|
|
|
|
* Do it.
|
|
|
*/
|
|
|
- if (do_des(0L, 0L, &r0, &r1, (int)count, data))
|
|
|
+ if (do_des(0L, 0L, &r0, &r1, (int)count))
|
|
|
return(NULL);
|
|
|
|
|
|
* Now encode the result...
|
|
@@ -726,17 +752,6 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da
|
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
*p = 0;
|
|
|
|
|
|
- return output;
|
|
|
-}
|
|
|
-
|
|
|
-#warning FIXME - setkey_r, encrypt_r, and __des_crypt_r are not really reentrant
|
|
|
-void setkey_r(const char *key, struct crypt_data *data)
|
|
|
-{
|
|
|
- __des_setkey_r(key, data);
|
|
|
-}
|
|
|
-
|
|
|
-extern void encrypt_r(char *block, int edflag, struct crypt_data *data)
|
|
|
-{
|
|
|
- __des_encrypt_r(block, edflag, data);
|
|
|
+ return(output);
|
|
|
}
|
|
|
|