123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /* i0.c
- *
- * Modified Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, i0();
- *
- * y = i0( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order zero of the
- * argument.
- *
- * The function is defined as i0(x) = j0( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 6000 8.2e-17 1.9e-17
- * IEEE 0,30 30000 5.8e-16 1.4e-16
- *
- */
- /* i0e.c
- *
- * Modified Bessel function of order zero,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, i0e();
- *
- * y = i0e( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order zero of the argument.
- *
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 5.4e-16 1.2e-16
- * See i0().
- *
- */
- /* i0.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- /* Chebyshev coefficients for exp(-x) I0(x)
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I0(x) } = 1.
- */
- #ifdef UNK
- static double A[] =
- {
- -4.41534164647933937950E-18,
- 3.33079451882223809783E-17,
- -2.43127984654795469359E-16,
- 1.71539128555513303061E-15,
- -1.16853328779934516808E-14,
- 7.67618549860493561688E-14,
- -4.85644678311192946090E-13,
- 2.95505266312963983461E-12,
- -1.72682629144155570723E-11,
- 9.67580903537323691224E-11,
- -5.18979560163526290666E-10,
- 2.65982372468238665035E-9,
- -1.30002500998624804212E-8,
- 6.04699502254191894932E-8,
- -2.67079385394061173391E-7,
- 1.11738753912010371815E-6,
- -4.41673835845875056359E-6,
- 1.64484480707288970893E-5,
- -5.75419501008210370398E-5,
- 1.88502885095841655729E-4,
- -5.76375574538582365885E-4,
- 1.63947561694133579842E-3,
- -4.32430999505057594430E-3,
- 1.05464603945949983183E-2,
- -2.37374148058994688156E-2,
- 4.93052842396707084878E-2,
- -9.49010970480476444210E-2,
- 1.71620901522208775349E-1,
- -3.04682672343198398683E-1,
- 6.76795274409476084995E-1
- };
- #endif
- #ifdef DEC
- static unsigned short A[] = {
- 0121642,0162671,0004646,0103567,
- 0022431,0115424,0135755,0026104,
- 0123214,0023533,0110365,0156635,
- 0023767,0033304,0117662,0172716,
- 0124522,0100426,0012277,0157531,
- 0025254,0155062,0054461,0030465,
- 0126010,0131143,0013560,0153604,
- 0026517,0170577,0006336,0114437,
- 0127227,0162253,0152243,0052734,
- 0027724,0142766,0061641,0160200,
- 0130416,0123760,0116564,0125262,
- 0031066,0144035,0021246,0054641,
- 0131537,0053664,0060131,0102530,
- 0032201,0155664,0165153,0020652,
- 0132617,0061434,0074423,0176145,
- 0033225,0174444,0136147,0122542,
- 0133624,0031576,0056453,0020470,
- 0034211,0175305,0172321,0041314,
- 0134561,0054462,0147040,0165315,
- 0035105,0124333,0120203,0162532,
- 0135427,0013750,0174257,0055221,
- 0035726,0161654,0050220,0100162,
- 0136215,0131361,0000325,0041110,
- 0036454,0145417,0117357,0017352,
- 0136702,0072367,0104415,0133574,
- 0037111,0172126,0072505,0014544,
- 0137302,0055601,0120550,0033523,
- 0037457,0136543,0136544,0043002,
- 0137633,0177536,0001276,0066150,
- 0040055,0041164,0100655,0010521
- };
- #endif
- #ifdef IBMPC
- static unsigned short A[] = {
- 0xd0ef,0x2134,0x5cb7,0xbc54,
- 0xa589,0x977d,0x3362,0x3c83,
- 0xbbb4,0x721e,0x84eb,0xbcb1,
- 0x5eba,0x93f6,0xe6d8,0x3cde,
- 0xfbeb,0xc297,0x5022,0xbd0a,
- 0x2627,0x4b26,0x9b46,0x3d35,
- 0x1af0,0x62ee,0x164c,0xbd61,
- 0xd324,0xe19b,0xfe2f,0x3d89,
- 0x6abc,0x7a94,0xfc95,0xbdb2,
- 0x3c10,0xcc74,0x98be,0x3dda,
- 0x9556,0x13ae,0xd4fe,0xbe01,
- 0xcb34,0xa454,0xd903,0x3e26,
- 0x30ab,0x8c0b,0xeaf6,0xbe4b,
- 0x6435,0x9d4d,0x3b76,0x3e70,
- 0x7f8d,0x8f22,0xec63,0xbe91,
- 0xf4ac,0x978c,0xbf24,0x3eb2,
- 0x6427,0xcba5,0x866f,0xbed2,
- 0x2859,0xbe9a,0x3f58,0x3ef1,
- 0x1d5a,0x59c4,0x2b26,0xbf0e,
- 0x7cab,0x7410,0xb51b,0x3f28,
- 0xeb52,0x1f15,0xe2fd,0xbf42,
- 0x100e,0x8a12,0xdc75,0x3f5a,
- 0xa849,0x201a,0xb65e,0xbf71,
- 0xe3dd,0xf3dd,0x9961,0x3f85,
- 0xb6f0,0xf121,0x4e9e,0xbf98,
- 0xa32d,0xcea8,0x3e8a,0x3fa9,
- 0x06ea,0x342d,0x4b70,0xbfb8,
- 0x88c0,0x77ac,0xf7ac,0x3fc5,
- 0xcd8d,0xc057,0x7feb,0xbfd3,
- 0xa22a,0x9035,0xa84e,0x3fe5,
- };
- #endif
- #ifdef MIEEE
- static unsigned short A[] = {
- 0xbc54,0x5cb7,0x2134,0xd0ef,
- 0x3c83,0x3362,0x977d,0xa589,
- 0xbcb1,0x84eb,0x721e,0xbbb4,
- 0x3cde,0xe6d8,0x93f6,0x5eba,
- 0xbd0a,0x5022,0xc297,0xfbeb,
- 0x3d35,0x9b46,0x4b26,0x2627,
- 0xbd61,0x164c,0x62ee,0x1af0,
- 0x3d89,0xfe2f,0xe19b,0xd324,
- 0xbdb2,0xfc95,0x7a94,0x6abc,
- 0x3dda,0x98be,0xcc74,0x3c10,
- 0xbe01,0xd4fe,0x13ae,0x9556,
- 0x3e26,0xd903,0xa454,0xcb34,
- 0xbe4b,0xeaf6,0x8c0b,0x30ab,
- 0x3e70,0x3b76,0x9d4d,0x6435,
- 0xbe91,0xec63,0x8f22,0x7f8d,
- 0x3eb2,0xbf24,0x978c,0xf4ac,
- 0xbed2,0x866f,0xcba5,0x6427,
- 0x3ef1,0x3f58,0xbe9a,0x2859,
- 0xbf0e,0x2b26,0x59c4,0x1d5a,
- 0x3f28,0xb51b,0x7410,0x7cab,
- 0xbf42,0xe2fd,0x1f15,0xeb52,
- 0x3f5a,0xdc75,0x8a12,0x100e,
- 0xbf71,0xb65e,0x201a,0xa849,
- 0x3f85,0x9961,0xf3dd,0xe3dd,
- 0xbf98,0x4e9e,0xf121,0xb6f0,
- 0x3fa9,0x3e8a,0xcea8,0xa32d,
- 0xbfb8,0x4b70,0x342d,0x06ea,
- 0x3fc5,0xf7ac,0x77ac,0x88c0,
- 0xbfd3,0x7feb,0xc057,0xcd8d,
- 0x3fe5,0xa84e,0x9035,0xa22a
- };
- #endif
- /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
- */
- #ifdef UNK
- static double B[] =
- {
- -7.23318048787475395456E-18,
- -4.83050448594418207126E-18,
- 4.46562142029675999901E-17,
- 3.46122286769746109310E-17,
- -2.82762398051658348494E-16,
- -3.42548561967721913462E-16,
- 1.77256013305652638360E-15,
- 3.81168066935262242075E-15,
- -9.55484669882830764870E-15,
- -4.15056934728722208663E-14,
- 1.54008621752140982691E-14,
- 3.85277838274214270114E-13,
- 7.18012445138366623367E-13,
- -1.79417853150680611778E-12,
- -1.32158118404477131188E-11,
- -3.14991652796324136454E-11,
- 1.18891471078464383424E-11,
- 4.94060238822496958910E-10,
- 3.39623202570838634515E-9,
- 2.26666899049817806459E-8,
- 2.04891858946906374183E-7,
- 2.89137052083475648297E-6,
- 6.88975834691682398426E-5,
- 3.36911647825569408990E-3,
- 8.04490411014108831608E-1
- };
- #endif
- #ifdef DEC
- static unsigned short B[] = {
- 0122005,0066672,0123124,0054311,
- 0121662,0033323,0030214,0104602,
- 0022515,0170300,0113314,0020413,
- 0022437,0117350,0035402,0007146,
- 0123243,0000135,0057220,0177435,
- 0123305,0073476,0144106,0170702,
- 0023777,0071755,0017527,0154373,
- 0024211,0052214,0102247,0033270,
- 0124454,0017763,0171453,0012322,
- 0125072,0166316,0075505,0154616,
- 0024612,0133770,0065376,0025045,
- 0025730,0162143,0056036,0001632,
- 0026112,0015077,0150464,0063542,
- 0126374,0101030,0014274,0065457,
- 0127150,0077271,0125763,0157617,
- 0127412,0104350,0040713,0120445,
- 0027121,0023765,0057500,0001165,
- 0030407,0147146,0003643,0075644,
- 0031151,0061445,0044422,0156065,
- 0031702,0132224,0003266,0125551,
- 0032534,0000076,0147153,0005555,
- 0033502,0004536,0004016,0026055,
- 0034620,0076433,0142314,0171215,
- 0036134,0146145,0013454,0101104,
- 0040115,0171425,0062500,0047133
- };
- #endif
- #ifdef IBMPC
- static unsigned short B[] = {
- 0x8b19,0x54ca,0xadb7,0xbc60,
- 0x9130,0x6611,0x46da,0xbc56,
- 0x8421,0x12d9,0xbe18,0x3c89,
- 0x41cd,0x0760,0xf3dd,0x3c83,
- 0x1fe4,0xabd2,0x600b,0xbcb4,
- 0xde38,0xd908,0xaee7,0xbcb8,
- 0xfb1f,0xa3ea,0xee7d,0x3cdf,
- 0xe6d7,0x9094,0x2a91,0x3cf1,
- 0x629a,0x7e65,0x83fe,0xbd05,
- 0xbb32,0xcf68,0x5d99,0xbd27,
- 0xc545,0x0d5f,0x56ff,0x3d11,
- 0xc073,0x6b83,0x1c8c,0x3d5b,
- 0x8cec,0xfa26,0x4347,0x3d69,
- 0x8d66,0x0317,0x9043,0xbd7f,
- 0x7bf2,0x357e,0x0fd7,0xbdad,
- 0x7425,0x0839,0x511d,0xbdc1,
- 0x004f,0xabe8,0x24fe,0x3daa,
- 0x6f75,0xc0f4,0xf9cc,0x3e00,
- 0x5b87,0xa922,0x2c64,0x3e2d,
- 0xd56d,0x80d6,0x5692,0x3e58,
- 0x616e,0xd9cd,0x8007,0x3e8b,
- 0xc586,0xc101,0x412b,0x3ec8,
- 0x9e52,0x7899,0x0fa3,0x3f12,
- 0x9049,0xa2e5,0x998c,0x3f6b,
- 0x09cb,0xaca8,0xbe62,0x3fe9
- };
- #endif
- #ifdef MIEEE
- static unsigned short B[] = {
- 0xbc60,0xadb7,0x54ca,0x8b19,
- 0xbc56,0x46da,0x6611,0x9130,
- 0x3c89,0xbe18,0x12d9,0x8421,
- 0x3c83,0xf3dd,0x0760,0x41cd,
- 0xbcb4,0x600b,0xabd2,0x1fe4,
- 0xbcb8,0xaee7,0xd908,0xde38,
- 0x3cdf,0xee7d,0xa3ea,0xfb1f,
- 0x3cf1,0x2a91,0x9094,0xe6d7,
- 0xbd05,0x83fe,0x7e65,0x629a,
- 0xbd27,0x5d99,0xcf68,0xbb32,
- 0x3d11,0x56ff,0x0d5f,0xc545,
- 0x3d5b,0x1c8c,0x6b83,0xc073,
- 0x3d69,0x4347,0xfa26,0x8cec,
- 0xbd7f,0x9043,0x0317,0x8d66,
- 0xbdad,0x0fd7,0x357e,0x7bf2,
- 0xbdc1,0x511d,0x0839,0x7425,
- 0x3daa,0x24fe,0xabe8,0x004f,
- 0x3e00,0xf9cc,0xc0f4,0x6f75,
- 0x3e2d,0x2c64,0xa922,0x5b87,
- 0x3e58,0x5692,0x80d6,0xd56d,
- 0x3e8b,0x8007,0xd9cd,0x616e,
- 0x3ec8,0x412b,0xc101,0xc586,
- 0x3f12,0x0fa3,0x7899,0x9e52,
- 0x3f6b,0x998c,0xa2e5,0x9049,
- 0x3fe9,0xbe62,0xaca8,0x09cb
- };
- #endif
- #ifdef ANSIPROT
- extern double chbevl ( double, void *, int );
- extern double exp ( double );
- extern double sqrt ( double );
- #else
- double chbevl(), exp(), sqrt();
- #endif
- double i0(x)
- double x;
- {
- double y;
- if( x < 0 )
- x = -x;
- if( x <= 8.0 )
- {
- y = (x/2.0) - 2.0;
- return( exp(x) * chbevl( y, A, 30 ) );
- }
- return( exp(x) * chbevl( 32.0/x - 2.0, B, 25 ) / sqrt(x) );
- }
- double i0e( x )
- double x;
- {
- double y;
- if( x < 0 )
- x = -x;
- if( x <= 8.0 )
- {
- y = (x/2.0) - 2.0;
- return( chbevl( y, A, 30 ) );
- }
- return( chbevl( 32.0/x - 2.0, B, 25 ) / sqrt(x) );
- }
|