ndtr.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. /* ndtr.c
  2. *
  3. * Normal distribution function
  4. *
  5. *
  6. *
  7. * SYNOPSIS:
  8. *
  9. * double x, y, ndtr();
  10. *
  11. * y = ndtr( x );
  12. *
  13. *
  14. *
  15. * DESCRIPTION:
  16. *
  17. * Returns the area under the Gaussian probability density
  18. * function, integrated from minus infinity to x:
  19. *
  20. * x
  21. * -
  22. * 1 | | 2
  23. * ndtr(x) = --------- | exp( - t /2 ) dt
  24. * sqrt(2pi) | |
  25. * -
  26. * -inf.
  27. *
  28. * = ( 1 + erf(z) ) / 2
  29. * = erfc(z) / 2
  30. *
  31. * where z = x/sqrt(2). Computation is via the functions
  32. * erf and erfc.
  33. *
  34. *
  35. * ACCURACY:
  36. *
  37. * Relative error:
  38. * arithmetic domain # trials peak rms
  39. * DEC -13,0 8000 2.1e-15 4.8e-16
  40. * IEEE -13,0 30000 3.4e-14 6.7e-15
  41. *
  42. *
  43. * ERROR MESSAGES:
  44. *
  45. * message condition value returned
  46. * erfc underflow x > 37.519379347 0.0
  47. *
  48. */
  49. /* erf.c
  50. *
  51. * Error function
  52. *
  53. *
  54. *
  55. * SYNOPSIS:
  56. *
  57. * double x, y, erf();
  58. *
  59. * y = erf( x );
  60. *
  61. *
  62. *
  63. * DESCRIPTION:
  64. *
  65. * The integral is
  66. *
  67. * x
  68. * -
  69. * 2 | | 2
  70. * erf(x) = -------- | exp( - t ) dt.
  71. * sqrt(pi) | |
  72. * -
  73. * 0
  74. *
  75. * The magnitude of x is limited to 9.231948545 for DEC
  76. * arithmetic; 1 or -1 is returned outside this range.
  77. *
  78. * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
  79. * erf(x) = 1 - erfc(x).
  80. *
  81. *
  82. *
  83. * ACCURACY:
  84. *
  85. * Relative error:
  86. * arithmetic domain # trials peak rms
  87. * DEC 0,1 14000 4.7e-17 1.5e-17
  88. * IEEE 0,1 30000 3.7e-16 1.0e-16
  89. *
  90. */
  91. /* erfc.c
  92. *
  93. * Complementary error function
  94. *
  95. *
  96. *
  97. * SYNOPSIS:
  98. *
  99. * double x, y, erfc();
  100. *
  101. * y = erfc( x );
  102. *
  103. *
  104. *
  105. * DESCRIPTION:
  106. *
  107. *
  108. * 1 - erf(x) =
  109. *
  110. * inf.
  111. * -
  112. * 2 | | 2
  113. * erfc(x) = -------- | exp( - t ) dt
  114. * sqrt(pi) | |
  115. * -
  116. * x
  117. *
  118. *
  119. * For small x, erfc(x) = 1 - erf(x); otherwise rational
  120. * approximations are computed.
  121. *
  122. *
  123. *
  124. * ACCURACY:
  125. *
  126. * Relative error:
  127. * arithmetic domain # trials peak rms
  128. * DEC 0, 9.2319 12000 5.1e-16 1.2e-16
  129. * IEEE 0,26.6417 30000 5.7e-14 1.5e-14
  130. *
  131. *
  132. * ERROR MESSAGES:
  133. *
  134. * message condition value returned
  135. * erfc underflow x > 9.231948545 (DEC) 0.0
  136. *
  137. *
  138. */
  139. /*
  140. Cephes Math Library Release 2.8: June, 2000
  141. Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
  142. */
  143. #include <math.h>
  144. extern double SQRTH;
  145. extern double MAXLOG;
  146. #ifdef UNK
  147. static double P[] = {
  148. 2.46196981473530512524E-10,
  149. 5.64189564831068821977E-1,
  150. 7.46321056442269912687E0,
  151. 4.86371970985681366614E1,
  152. 1.96520832956077098242E2,
  153. 5.26445194995477358631E2,
  154. 9.34528527171957607540E2,
  155. 1.02755188689515710272E3,
  156. 5.57535335369399327526E2
  157. };
  158. static double Q[] = {
  159. /* 1.00000000000000000000E0,*/
  160. 1.32281951154744992508E1,
  161. 8.67072140885989742329E1,
  162. 3.54937778887819891062E2,
  163. 9.75708501743205489753E2,
  164. 1.82390916687909736289E3,
  165. 2.24633760818710981792E3,
  166. 1.65666309194161350182E3,
  167. 5.57535340817727675546E2
  168. };
  169. static double R[] = {
  170. 5.64189583547755073984E-1,
  171. 1.27536670759978104416E0,
  172. 5.01905042251180477414E0,
  173. 6.16021097993053585195E0,
  174. 7.40974269950448939160E0,
  175. 2.97886665372100240670E0
  176. };
  177. static double S[] = {
  178. /* 1.00000000000000000000E0,*/
  179. 2.26052863220117276590E0,
  180. 9.39603524938001434673E0,
  181. 1.20489539808096656605E1,
  182. 1.70814450747565897222E1,
  183. 9.60896809063285878198E0,
  184. 3.36907645100081516050E0
  185. };
  186. static double T[] = {
  187. 9.60497373987051638749E0,
  188. 9.00260197203842689217E1,
  189. 2.23200534594684319226E3,
  190. 7.00332514112805075473E3,
  191. 5.55923013010394962768E4
  192. };
  193. static double U[] = {
  194. /* 1.00000000000000000000E0,*/
  195. 3.35617141647503099647E1,
  196. 5.21357949780152679795E2,
  197. 4.59432382970980127987E3,
  198. 2.26290000613890934246E4,
  199. 4.92673942608635921086E4
  200. };
  201. #define UTHRESH 37.519379347
  202. #endif
  203. #ifdef DEC
  204. static unsigned short P[] = {
  205. 0030207,0054445,0011173,0021706,
  206. 0040020,0067272,0030661,0122075,
  207. 0040756,0151236,0173053,0067042,
  208. 0041502,0106175,0062555,0151457,
  209. 0042104,0102525,0047401,0003667,
  210. 0042403,0116176,0011446,0075303,
  211. 0042551,0120723,0061641,0123275,
  212. 0042600,0070651,0007264,0134516,
  213. 0042413,0061102,0167507,0176625
  214. };
  215. static unsigned short Q[] = {
  216. /*0040200,0000000,0000000,0000000,*/
  217. 0041123,0123257,0165741,0017142,
  218. 0041655,0065027,0173413,0115450,
  219. 0042261,0074011,0021573,0004150,
  220. 0042563,0166530,0013662,0007200,
  221. 0042743,0176427,0162443,0105214,
  222. 0043014,0062546,0153727,0123772,
  223. 0042717,0012470,0006227,0067424,
  224. 0042413,0061103,0003042,0013254
  225. };
  226. static unsigned short R[] = {
  227. 0040020,0067272,0101024,0155421,
  228. 0040243,0037467,0056706,0026462,
  229. 0040640,0116017,0120665,0034315,
  230. 0040705,0020162,0143350,0060137,
  231. 0040755,0016234,0134304,0130157,
  232. 0040476,0122700,0051070,0015473
  233. };
  234. static unsigned short S[] = {
  235. /*0040200,0000000,0000000,0000000,*/
  236. 0040420,0126200,0044276,0070413,
  237. 0041026,0053051,0007302,0063746,
  238. 0041100,0144203,0174051,0061151,
  239. 0041210,0123314,0126343,0177646,
  240. 0041031,0137125,0051431,0033011,
  241. 0040527,0117362,0152661,0066201
  242. };
  243. static unsigned short T[] = {
  244. 0041031,0126770,0170672,0166101,
  245. 0041664,0006522,0072360,0031770,
  246. 0043013,0100025,0162641,0126671,
  247. 0043332,0155231,0161627,0076200,
  248. 0044131,0024115,0021020,0117343
  249. };
  250. static unsigned short U[] = {
  251. /*0040200,0000000,0000000,0000000,*/
  252. 0041406,0037461,0177575,0032714,
  253. 0042402,0053350,0123061,0153557,
  254. 0043217,0111227,0032007,0164217,
  255. 0043660,0145000,0004013,0160114,
  256. 0044100,0071544,0167107,0125471
  257. };
  258. #define UTHRESH 14.0
  259. #endif
  260. #ifdef IBMPC
  261. static unsigned short P[] = {
  262. 0x6479,0xa24f,0xeb24,0x3df0,
  263. 0x3488,0x4636,0x0dd7,0x3fe2,
  264. 0x6dc4,0xdec5,0xda53,0x401d,
  265. 0xba66,0xacad,0x518f,0x4048,
  266. 0x20f7,0xa9e0,0x90aa,0x4068,
  267. 0xcf58,0xc264,0x738f,0x4080,
  268. 0x34d8,0x6c74,0x343a,0x408d,
  269. 0x972a,0x21d6,0x0e35,0x4090,
  270. 0xffb3,0x5de8,0x6c48,0x4081
  271. };
  272. static unsigned short Q[] = {
  273. /*0x0000,0x0000,0x0000,0x3ff0,*/
  274. 0x23cc,0xfd7c,0x74d5,0x402a,
  275. 0x7365,0xfee1,0xad42,0x4055,
  276. 0x610d,0x246f,0x2f01,0x4076,
  277. 0x41d0,0x02f6,0x7dab,0x408e,
  278. 0x7151,0xfca4,0x7fa2,0x409c,
  279. 0xf4ff,0xdafa,0x8cac,0x40a1,
  280. 0xede2,0x0192,0xe2a7,0x4099,
  281. 0x42d6,0x60c4,0x6c48,0x4081
  282. };
  283. static unsigned short R[] = {
  284. 0x9b62,0x5042,0x0dd7,0x3fe2,
  285. 0xc5a6,0xebb8,0x67e6,0x3ff4,
  286. 0xa71a,0xf436,0x1381,0x4014,
  287. 0x0c0c,0x58dd,0xa40e,0x4018,
  288. 0x960e,0x9718,0xa393,0x401d,
  289. 0x0367,0x0a47,0xd4b8,0x4007
  290. };
  291. static unsigned short S[] = {
  292. /*0x0000,0x0000,0x0000,0x3ff0,*/
  293. 0xce21,0x0917,0x1590,0x4002,
  294. 0x4cfd,0x21d8,0xcac5,0x4022,
  295. 0x2c4d,0x7f05,0x1910,0x4028,
  296. 0x7ff5,0x959c,0x14d9,0x4031,
  297. 0x26c1,0xaa63,0x37ca,0x4023,
  298. 0x2d90,0x5ab6,0xf3de,0x400a
  299. };
  300. static unsigned short T[] = {
  301. 0x5d88,0x1e37,0x35bf,0x4023,
  302. 0x067f,0x4e9e,0x81aa,0x4056,
  303. 0x35b7,0xbcb4,0x7002,0x40a1,
  304. 0xef90,0x3c72,0x5b53,0x40bb,
  305. 0x13dc,0xa442,0x2509,0x40eb
  306. };
  307. static unsigned short U[] = {
  308. /*0x0000,0x0000,0x0000,0x3ff0,*/
  309. 0xa6ba,0x3fef,0xc7e6,0x4040,
  310. 0x3aee,0x14c6,0x4add,0x4080,
  311. 0xfd12,0xe680,0xf252,0x40b1,
  312. 0x7c0a,0x0101,0x1940,0x40d6,
  313. 0xf567,0x9dc8,0x0e6c,0x40e8
  314. };
  315. #define UTHRESH 37.519379347
  316. #endif
  317. #ifdef MIEEE
  318. static unsigned short P[] = {
  319. 0x3df0,0xeb24,0xa24f,0x6479,
  320. 0x3fe2,0x0dd7,0x4636,0x3488,
  321. 0x401d,0xda53,0xdec5,0x6dc4,
  322. 0x4048,0x518f,0xacad,0xba66,
  323. 0x4068,0x90aa,0xa9e0,0x20f7,
  324. 0x4080,0x738f,0xc264,0xcf58,
  325. 0x408d,0x343a,0x6c74,0x34d8,
  326. 0x4090,0x0e35,0x21d6,0x972a,
  327. 0x4081,0x6c48,0x5de8,0xffb3
  328. };
  329. static unsigned short Q[] = {
  330. 0x402a,0x74d5,0xfd7c,0x23cc,
  331. 0x4055,0xad42,0xfee1,0x7365,
  332. 0x4076,0x2f01,0x246f,0x610d,
  333. 0x408e,0x7dab,0x02f6,0x41d0,
  334. 0x409c,0x7fa2,0xfca4,0x7151,
  335. 0x40a1,0x8cac,0xdafa,0xf4ff,
  336. 0x4099,0xe2a7,0x0192,0xede2,
  337. 0x4081,0x6c48,0x60c4,0x42d6
  338. };
  339. static unsigned short R[] = {
  340. 0x3fe2,0x0dd7,0x5042,0x9b62,
  341. 0x3ff4,0x67e6,0xebb8,0xc5a6,
  342. 0x4014,0x1381,0xf436,0xa71a,
  343. 0x4018,0xa40e,0x58dd,0x0c0c,
  344. 0x401d,0xa393,0x9718,0x960e,
  345. 0x4007,0xd4b8,0x0a47,0x0367
  346. };
  347. static unsigned short S[] = {
  348. 0x4002,0x1590,0x0917,0xce21,
  349. 0x4022,0xcac5,0x21d8,0x4cfd,
  350. 0x4028,0x1910,0x7f05,0x2c4d,
  351. 0x4031,0x14d9,0x959c,0x7ff5,
  352. 0x4023,0x37ca,0xaa63,0x26c1,
  353. 0x400a,0xf3de,0x5ab6,0x2d90
  354. };
  355. static unsigned short T[] = {
  356. 0x4023,0x35bf,0x1e37,0x5d88,
  357. 0x4056,0x81aa,0x4e9e,0x067f,
  358. 0x40a1,0x7002,0xbcb4,0x35b7,
  359. 0x40bb,0x5b53,0x3c72,0xef90,
  360. 0x40eb,0x2509,0xa442,0x13dc
  361. };
  362. static unsigned short U[] = {
  363. 0x4040,0xc7e6,0x3fef,0xa6ba,
  364. 0x4080,0x4add,0x14c6,0x3aee,
  365. 0x40b1,0xf252,0xe680,0xfd12,
  366. 0x40d6,0x1940,0x0101,0x7c0a,
  367. 0x40e8,0x0e6c,0x9dc8,0xf567
  368. };
  369. #define UTHRESH 37.519379347
  370. #endif
  371. #ifdef ANSIPROT
  372. extern double polevl ( double, void *, int );
  373. extern double p1evl ( double, void *, int );
  374. extern double exp ( double );
  375. extern double log ( double );
  376. extern double fabs ( double );
  377. double erf ( double );
  378. double erfc ( double );
  379. #else
  380. double polevl(), p1evl(), exp(), log(), fabs();
  381. double erf(), erfc();
  382. #endif
  383. double ndtr(a)
  384. double a;
  385. {
  386. double x, y, z;
  387. x = a * SQRTH;
  388. z = fabs(x);
  389. if( z < SQRTH )
  390. y = 0.5 + 0.5 * erf(x);
  391. else
  392. {
  393. y = 0.5 * erfc(z);
  394. if( x > 0 )
  395. y = 1.0 - y;
  396. }
  397. return(y);
  398. }
  399. double erfc(a)
  400. double a;
  401. {
  402. double p,q,x,y,z;
  403. if( a < 0.0 )
  404. x = -a;
  405. else
  406. x = a;
  407. if( x < 1.0 )
  408. return( 1.0 - erf(a) );
  409. z = -a * a;
  410. if( z < -MAXLOG )
  411. {
  412. under:
  413. mtherr( "erfc", UNDERFLOW );
  414. if( a < 0 )
  415. return( 2.0 );
  416. else
  417. return( 0.0 );
  418. }
  419. z = exp(z);
  420. if( x < 8.0 )
  421. {
  422. p = polevl( x, P, 8 );
  423. q = p1evl( x, Q, 8 );
  424. }
  425. else
  426. {
  427. p = polevl( x, R, 5 );
  428. q = p1evl( x, S, 6 );
  429. }
  430. y = (z * p)/q;
  431. if( a < 0 )
  432. y = 2.0 - y;
  433. if( y == 0.0 )
  434. goto under;
  435. return(y);
  436. }
  437. double erf(x)
  438. double x;
  439. {
  440. double y, z;
  441. if( fabs(x) > 1.0 )
  442. return( 1.0 - erfc(x) );
  443. z = x * x;
  444. y = x * polevl( z, T, 4 ) / p1evl( z, U, 5 );
  445. return( y );
  446. }