123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481 |
- /* ndtr.c
- *
- * Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, ndtr();
- *
- * y = ndtr( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the Gaussian probability density
- * function, integrated from minus infinity to x:
- *
- * x
- * -
- * 1 | | 2
- * ndtr(x) = --------- | exp( - t /2 ) dt
- * sqrt(2pi) | |
- * -
- * -inf.
- *
- * = ( 1 + erf(z) ) / 2
- * = erfc(z) / 2
- *
- * where z = x/sqrt(2). Computation is via the functions
- * erf and erfc.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -13,0 8000 2.1e-15 4.8e-16
- * IEEE -13,0 30000 3.4e-14 6.7e-15
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * erfc underflow x > 37.519379347 0.0
- *
- */
- /* erf.c
- *
- * Error function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, erf();
- *
- * y = erf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The integral is
- *
- * x
- * -
- * 2 | | 2
- * erf(x) = -------- | exp( - t ) dt.
- * sqrt(pi) | |
- * -
- * 0
- *
- * The magnitude of x is limited to 9.231948545 for DEC
- * arithmetic; 1 or -1 is returned outside this range.
- *
- * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
- * erf(x) = 1 - erfc(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,1 14000 4.7e-17 1.5e-17
- * IEEE 0,1 30000 3.7e-16 1.0e-16
- *
- */
- /* erfc.c
- *
- * Complementary error function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, erfc();
- *
- * y = erfc( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * 1 - erf(x) =
- *
- * inf.
- * -
- * 2 | | 2
- * erfc(x) = -------- | exp( - t ) dt
- * sqrt(pi) | |
- * -
- * x
- *
- *
- * For small x, erfc(x) = 1 - erf(x); otherwise rational
- * approximations are computed.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 9.2319 12000 5.1e-16 1.2e-16
- * IEEE 0,26.6417 30000 5.7e-14 1.5e-14
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * erfc underflow x > 9.231948545 (DEC) 0.0
- *
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- extern double SQRTH;
- extern double MAXLOG;
- #ifdef UNK
- static double P[] = {
- 2.46196981473530512524E-10,
- 5.64189564831068821977E-1,
- 7.46321056442269912687E0,
- 4.86371970985681366614E1,
- 1.96520832956077098242E2,
- 5.26445194995477358631E2,
- 9.34528527171957607540E2,
- 1.02755188689515710272E3,
- 5.57535335369399327526E2
- };
- static double Q[] = {
- /* 1.00000000000000000000E0,*/
- 1.32281951154744992508E1,
- 8.67072140885989742329E1,
- 3.54937778887819891062E2,
- 9.75708501743205489753E2,
- 1.82390916687909736289E3,
- 2.24633760818710981792E3,
- 1.65666309194161350182E3,
- 5.57535340817727675546E2
- };
- static double R[] = {
- 5.64189583547755073984E-1,
- 1.27536670759978104416E0,
- 5.01905042251180477414E0,
- 6.16021097993053585195E0,
- 7.40974269950448939160E0,
- 2.97886665372100240670E0
- };
- static double S[] = {
- /* 1.00000000000000000000E0,*/
- 2.26052863220117276590E0,
- 9.39603524938001434673E0,
- 1.20489539808096656605E1,
- 1.70814450747565897222E1,
- 9.60896809063285878198E0,
- 3.36907645100081516050E0
- };
- static double T[] = {
- 9.60497373987051638749E0,
- 9.00260197203842689217E1,
- 2.23200534594684319226E3,
- 7.00332514112805075473E3,
- 5.55923013010394962768E4
- };
- static double U[] = {
- /* 1.00000000000000000000E0,*/
- 3.35617141647503099647E1,
- 5.21357949780152679795E2,
- 4.59432382970980127987E3,
- 2.26290000613890934246E4,
- 4.92673942608635921086E4
- };
- #define UTHRESH 37.519379347
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0030207,0054445,0011173,0021706,
- 0040020,0067272,0030661,0122075,
- 0040756,0151236,0173053,0067042,
- 0041502,0106175,0062555,0151457,
- 0042104,0102525,0047401,0003667,
- 0042403,0116176,0011446,0075303,
- 0042551,0120723,0061641,0123275,
- 0042600,0070651,0007264,0134516,
- 0042413,0061102,0167507,0176625
- };
- static unsigned short Q[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0041123,0123257,0165741,0017142,
- 0041655,0065027,0173413,0115450,
- 0042261,0074011,0021573,0004150,
- 0042563,0166530,0013662,0007200,
- 0042743,0176427,0162443,0105214,
- 0043014,0062546,0153727,0123772,
- 0042717,0012470,0006227,0067424,
- 0042413,0061103,0003042,0013254
- };
- static unsigned short R[] = {
- 0040020,0067272,0101024,0155421,
- 0040243,0037467,0056706,0026462,
- 0040640,0116017,0120665,0034315,
- 0040705,0020162,0143350,0060137,
- 0040755,0016234,0134304,0130157,
- 0040476,0122700,0051070,0015473
- };
- static unsigned short S[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0040420,0126200,0044276,0070413,
- 0041026,0053051,0007302,0063746,
- 0041100,0144203,0174051,0061151,
- 0041210,0123314,0126343,0177646,
- 0041031,0137125,0051431,0033011,
- 0040527,0117362,0152661,0066201
- };
- static unsigned short T[] = {
- 0041031,0126770,0170672,0166101,
- 0041664,0006522,0072360,0031770,
- 0043013,0100025,0162641,0126671,
- 0043332,0155231,0161627,0076200,
- 0044131,0024115,0021020,0117343
- };
- static unsigned short U[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0041406,0037461,0177575,0032714,
- 0042402,0053350,0123061,0153557,
- 0043217,0111227,0032007,0164217,
- 0043660,0145000,0004013,0160114,
- 0044100,0071544,0167107,0125471
- };
- #define UTHRESH 14.0
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x6479,0xa24f,0xeb24,0x3df0,
- 0x3488,0x4636,0x0dd7,0x3fe2,
- 0x6dc4,0xdec5,0xda53,0x401d,
- 0xba66,0xacad,0x518f,0x4048,
- 0x20f7,0xa9e0,0x90aa,0x4068,
- 0xcf58,0xc264,0x738f,0x4080,
- 0x34d8,0x6c74,0x343a,0x408d,
- 0x972a,0x21d6,0x0e35,0x4090,
- 0xffb3,0x5de8,0x6c48,0x4081
- };
- static unsigned short Q[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0x23cc,0xfd7c,0x74d5,0x402a,
- 0x7365,0xfee1,0xad42,0x4055,
- 0x610d,0x246f,0x2f01,0x4076,
- 0x41d0,0x02f6,0x7dab,0x408e,
- 0x7151,0xfca4,0x7fa2,0x409c,
- 0xf4ff,0xdafa,0x8cac,0x40a1,
- 0xede2,0x0192,0xe2a7,0x4099,
- 0x42d6,0x60c4,0x6c48,0x4081
- };
- static unsigned short R[] = {
- 0x9b62,0x5042,0x0dd7,0x3fe2,
- 0xc5a6,0xebb8,0x67e6,0x3ff4,
- 0xa71a,0xf436,0x1381,0x4014,
- 0x0c0c,0x58dd,0xa40e,0x4018,
- 0x960e,0x9718,0xa393,0x401d,
- 0x0367,0x0a47,0xd4b8,0x4007
- };
- static unsigned short S[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0xce21,0x0917,0x1590,0x4002,
- 0x4cfd,0x21d8,0xcac5,0x4022,
- 0x2c4d,0x7f05,0x1910,0x4028,
- 0x7ff5,0x959c,0x14d9,0x4031,
- 0x26c1,0xaa63,0x37ca,0x4023,
- 0x2d90,0x5ab6,0xf3de,0x400a
- };
- static unsigned short T[] = {
- 0x5d88,0x1e37,0x35bf,0x4023,
- 0x067f,0x4e9e,0x81aa,0x4056,
- 0x35b7,0xbcb4,0x7002,0x40a1,
- 0xef90,0x3c72,0x5b53,0x40bb,
- 0x13dc,0xa442,0x2509,0x40eb
- };
- static unsigned short U[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0xa6ba,0x3fef,0xc7e6,0x4040,
- 0x3aee,0x14c6,0x4add,0x4080,
- 0xfd12,0xe680,0xf252,0x40b1,
- 0x7c0a,0x0101,0x1940,0x40d6,
- 0xf567,0x9dc8,0x0e6c,0x40e8
- };
- #define UTHRESH 37.519379347
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3df0,0xeb24,0xa24f,0x6479,
- 0x3fe2,0x0dd7,0x4636,0x3488,
- 0x401d,0xda53,0xdec5,0x6dc4,
- 0x4048,0x518f,0xacad,0xba66,
- 0x4068,0x90aa,0xa9e0,0x20f7,
- 0x4080,0x738f,0xc264,0xcf58,
- 0x408d,0x343a,0x6c74,0x34d8,
- 0x4090,0x0e35,0x21d6,0x972a,
- 0x4081,0x6c48,0x5de8,0xffb3
- };
- static unsigned short Q[] = {
- 0x402a,0x74d5,0xfd7c,0x23cc,
- 0x4055,0xad42,0xfee1,0x7365,
- 0x4076,0x2f01,0x246f,0x610d,
- 0x408e,0x7dab,0x02f6,0x41d0,
- 0x409c,0x7fa2,0xfca4,0x7151,
- 0x40a1,0x8cac,0xdafa,0xf4ff,
- 0x4099,0xe2a7,0x0192,0xede2,
- 0x4081,0x6c48,0x60c4,0x42d6
- };
- static unsigned short R[] = {
- 0x3fe2,0x0dd7,0x5042,0x9b62,
- 0x3ff4,0x67e6,0xebb8,0xc5a6,
- 0x4014,0x1381,0xf436,0xa71a,
- 0x4018,0xa40e,0x58dd,0x0c0c,
- 0x401d,0xa393,0x9718,0x960e,
- 0x4007,0xd4b8,0x0a47,0x0367
- };
- static unsigned short S[] = {
- 0x4002,0x1590,0x0917,0xce21,
- 0x4022,0xcac5,0x21d8,0x4cfd,
- 0x4028,0x1910,0x7f05,0x2c4d,
- 0x4031,0x14d9,0x959c,0x7ff5,
- 0x4023,0x37ca,0xaa63,0x26c1,
- 0x400a,0xf3de,0x5ab6,0x2d90
- };
- static unsigned short T[] = {
- 0x4023,0x35bf,0x1e37,0x5d88,
- 0x4056,0x81aa,0x4e9e,0x067f,
- 0x40a1,0x7002,0xbcb4,0x35b7,
- 0x40bb,0x5b53,0x3c72,0xef90,
- 0x40eb,0x2509,0xa442,0x13dc
- };
- static unsigned short U[] = {
- 0x4040,0xc7e6,0x3fef,0xa6ba,
- 0x4080,0x4add,0x14c6,0x3aee,
- 0x40b1,0xf252,0xe680,0xfd12,
- 0x40d6,0x1940,0x0101,0x7c0a,
- 0x40e8,0x0e6c,0x9dc8,0xf567
- };
- #define UTHRESH 37.519379347
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double exp ( double );
- extern double log ( double );
- extern double fabs ( double );
- double erf ( double );
- double erfc ( double );
- #else
- double polevl(), p1evl(), exp(), log(), fabs();
- double erf(), erfc();
- #endif
- double ndtr(a)
- double a;
- {
- double x, y, z;
- x = a * SQRTH;
- z = fabs(x);
- if( z < SQRTH )
- y = 0.5 + 0.5 * erf(x);
- else
- {
- y = 0.5 * erfc(z);
- if( x > 0 )
- y = 1.0 - y;
- }
- return(y);
- }
- double erfc(a)
- double a;
- {
- double p,q,x,y,z;
- if( a < 0.0 )
- x = -a;
- else
- x = a;
- if( x < 1.0 )
- return( 1.0 - erf(a) );
- z = -a * a;
- if( z < -MAXLOG )
- {
- under:
- mtherr( "erfc", UNDERFLOW );
- if( a < 0 )
- return( 2.0 );
- else
- return( 0.0 );
- }
- z = exp(z);
- if( x < 8.0 )
- {
- p = polevl( x, P, 8 );
- q = p1evl( x, Q, 8 );
- }
- else
- {
- p = polevl( x, R, 5 );
- q = p1evl( x, S, 6 );
- }
- y = (z * p)/q;
- if( a < 0 )
- y = 2.0 - y;
- if( y == 0.0 )
- goto under;
- return(y);
- }
- double erf(x)
- double x;
- {
- double y, z;
- if( fabs(x) > 1.0 )
- return( 1.0 - erfc(x) );
- z = x * x;
- y = x * polevl( z, T, 4 ) / p1evl( z, U, 5 );
- return( y );
- }
|